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ABSTRACT 
 
Classification of data has been researched in different arenas of 
machine learning and statistical approximation techniques. 
Various techniques ranging from neural networks, clustering, 
discriminant functions to regression models have been employed 
for this purpose. Since no technique can produce the best model 
in all applications, it is essential to evaluate the individual 
models. This is often referred to as the model selection problem. 
Akin to the function approximation scenario, several approaches 
have been proposed and in this paper we evaluate their 
efficiency. However, they are not without drawbacks as can be 
seen from our experiments. Our focus in this study is to evaluate 
the performance metrics with respect to their efficiency in 
optimizing accuracy with complexity. The application of Akaike 
Information Criteria (AIC) to classification problems has also 
been explored in this paper.  
 
Keywords: AIC, multiple comparison procedures, 
performance evaluation 
 

1. INTRODUCTION 
 
Computational Intelligence and statistical algorithms are 
increasingly applied to solve problems with no or difficult 
analytical solutions (first principle models). Their 
applications range from process optimization and control, 
image processing, medical diagnosis, gene mapping to 
natural language processing etc. The reason for their vast 
application domain is primarily their adaptability and 
universal applicability. 

These algorithms, especially those belonging to 
the soft computing arena, are highly adaptable and hence 
this often leads to the notion of easy usability. This might 
be true in ideal situations, although in practice any 
modeling using soft computing or statistical algorithms is 
usually a laborious process. The modeling procedure is a 

cycle that comprises of three broad stages – data 
preprocessing, learning and validation. The complexity of 
using these methodologies lies in the absence of sound 
governing principles (within these stages) that would 
theoretically point to the next modeling step. For instance, 
feature extraction belonging to the preprocessing stage is 
indispensable in most applications, yet there are no 
universally applicable features nor is there a definitive 
methodology to identify the ideal set of features for any 
domain (from the data alone). Such complexities result in 
modeling being an intensively iterative process. 

Additional complexity is induced by the fact that 
these algorithms yield highly incomparable solutions – in 
form, complexity etc. Since a multitude of these 
algorithms can be applied to any given problem it becomes 
imperative to select the “best” among them. This problem 
is referred to as the model selection problem and 
essentially it aims at selecting the model that has achieved 
a good compromise between its complexity and precision. 
It is also defined in terms of the compromise between the 
modeling bias and variance (Duda et al, 2001). 

Any supervised learning task is a derivative of the 
generalized learning problem which consists of estimating 
the function  f defined as )w,x(fy = , where y are the 
required outputs and x are the inputs. The learning problem 
is defined as approximating f in the sense of minimizing 
the risk functional defined below (Vapnik, 1999). 

∫= dxdy)y,x(p))w,x(f,y(L)w(R  , where p(x,y) is the 

joint probability distribution and L is a loss function and w 
is the set of estimated parameters. According to the above 
notation, if y is continuous it is a function approximation 
task and if it is categorical the problem is a classification 
task. The loss function “L” varies with inductive principle 
and at times with the learning task. Model selection based 
only on the empirical risk is not a desirable approach as it 
is does not take into consideration the intrinsic 
dimensionality of the model and its generalization ability. 



Section 2 gives a summary of various evaluation 
methods that assist in model selection. Section 3 examines 
the problem in the function approximation arena and 
section 4 in the classification arena. 
 

2. MODEL EVALUATION 
 
As mentioned previously, model evaluation is done with 
the goal of selecting the best available model for the given 
dataset. Several criteria, tests and methods have been 
proposed in the literature. Some of them are summarized 
below.  

Traditionally criteria like SSE, MSE, MAP, R2, 
R2

(adj), PRESS are used to validate a model. The usual 
approach is to split the available data into learning and 
validation sets (Cherkassky and Mulier, 1998). The 
algorithms are supplied with the learning sets to create the 
model and are later validated with the above-mentioned 
criteria on the validation dataset. The definition of the 
above parameters is given in table1. 
 
Table 1. Definition of the traditional criteria used in model 
evaluation 
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ii )ŷy(  

MSE (Mean 
Squared Error) ∑

=

−
−

n

1i

2
ii )ŷy(
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The quality of the model is in inverse proportion 
to the magnitude of the first three criteria and also to the 
deviation of the last two criteria from “1”. However it has 
to be mentioned that these criteria are not appropriate for 
model selection in all situations. For instance, R2 should 
not be used for comparison of modeling algorithms that do 
no satisfy the criteria that 0ei =∑  and 0ey ii =∑  
where ei are the corresponding residuals. This is especially 
true in the case of neural networks where situations with 
R2 greater than 1 are often encountered. Besides the 
restrictions mentioned above these criteria do not explicitly 
take into account the underlying dimensionality of the 
model (except R2

(adj)) and the complexity of data into 
account. Some criteria specific to neural networks were 
explored by Ripley (1995). 

Statistical tests classified under Multiple 
Comparison Procedures (MCP) are another category of 
model evaluation techniques that are often used to 
compare a set of possible models to the given data. Such 
tests include McNemar’s test,  a test for difference of error 
proportions, resampled paired t test, k-fold cross validated 
paired t test and 5x2cv paired t test. (Diettrich, 1997).  

The basic concept of these tests is to check for 
significant difference in error (or its proportions) from the 
various models developed. Since the usual practice is to 
check for this difference among the error vectors from the 
same dataset, care must be taken to compensate for 
correlation. Secondly, the multiplicity effect that arises out 
of simultaneous pair wise comparisons between the models 
should also be taken into consideration (because of 
increased chances of Type I error).   

The Hochberg and Tamhane test is appropriate 
for the function approximation problems and it is based on 
studentized maximum modulus distribution. Dunn (1961) 
proposed a test based on studentized t distribution that can 
reveal any significant differences between error 
proportions (well suited for classification problems). An 
excellent summary of both these tests is given in Feelders 
and Verkooijen (1996). These two tests are part of the 
focus in this study. 

A third evaluation strategy is to construct a 
penalization form of criteria that enhances the empirical 
risk with a term that disfavors complex models 
(Domingos,1999). There are several penalization forms 
and AIC (Akaike Information Criterion) as defined below 
is one of them (Ishikawa, 1996). 

knlAIC 2)ˆlog( 2 += σ  
where, k is the number of independent estimated 
parameter, l is the number of output units and 2σ̂  is the 
maximum likelihood estimate of the mean square error. 



3. FUNCTION APPROXIMATION 
 
In this section we compare the performance of different 
evaluation criteria in the domain of function 
approximation. We use an approach similar to the one 
proposed by Lawrence et al (1997) where a randomly 
initialized teacher network is used to extract the training 
and testing data. Networks of varying complexities called 
student networks are then trained on the learning dataset 
and validated with the testing data. In our case study we 
chose a neural network consisting of 3 neurons as the 
teacher network. This network is used to extract the 
necessary data that consists of standard normal random 
inputs (2-dimensional) and the respective outputs. The data 
was split into learning and validation sets comprising of 
140 and 60 patterns respectively. 

Networks of varying size are trained with the 
learning data (using the conjugate gradient descent 
algorithm) for 500 epochs. Various evaluation criteria 
along with the Hochberg and Tamhane confidence 
intervals (at 95% level) are given in Tables 2 and 3 
respectively. 
 
Table 2. Values of various evaluation criteria for the 
function approximation problem 
 

Hidden 
Neurons MSE R2 R2

(adj) AIC 
2 0.006471215 0.417 0.3256 -285.4319 
3 0.000054294 0.7061 0.631 -564.2748 
5 0.000040264 0.8028 0.7017 -566.2111 
10 0.000220444 0.8472 0.5254 -424.2004 
15 0.000046811 0.8769 8.2639 -477.1716 
20 0.004963404 0.8229 1.4976 -157.3482 

 
Table 3. Confidence intervals from pairwise Hochberg and 
Tamhane test 
 

 
M
o
d
e
l 1 2 3 4 5 6 

1 -  
[-2.777 
2.790] 

[-2.777 
2.790] 

[-2.777 
2.789] 

[-2.777 
2.790] 

[-2.781 
2.784] 

2 -  -  
[-2.780 
2.780] 

 [-
2.780 
2.779] 

[-2.780 
2.780] 

[-2.787 
2.778] 

3 -  -  -  
[-2.780 
2.779] 

[-2.780 
2.780] 

[-2.787 
2.7777] 

4 - -  -  -  
[-2.780 
2.780] 

[-2.787 
2.778] 

5 -  -  -  -  -  
[-2.787 
2.778] 

 

From Table 2 we cannot conclusively select a 
model because of varying indications from the different 
criteria, although AIC points to the model with 5 hidden 
neurons which is the closest to the original model (3 
hidden neurons). From Table 3 it is evident that the 
Hochberg & Tamhane test concludes that all models are 
equally good. 

Though AIC was close to the original model (3 
neurons), it cannot be concluded that it did in fact select a 
model that best fits the data and it is also not valid to 
assume that a 3 or close to 3 hidden neuron network is a 
good fit for the finite data. (This validates the theory that 
for finite data, the best fit is not necessarily a model 
identical to the true parametric form [Cherkassky & 
Mulier,1998]. Though, it is interesting that the best fit here 
is in fact of a higher complexity than the true parametric 
form.)  

To confirm that the 5 hidden neuron model is in 
fact superior, a generalization test was performed where 
noisy inputs were presented to the networks. The (additive) 
noisy inputs were generated as )dBW,i(wgn)i(I)i(I +=  
where “I” is the original input value and “wgn” is white 
gaussian noise with power specified by “dBW”. The result 
from the test is given in Table 4. It can be seen from the 
table and Figure 1 that the network with 5 neurons has the 
best overall predictions at various noise levels. 
 
Table 4. MSE values of the models at different noise levels 
 

Neurons 
 
  
Noise 
(dBW)        2 3 5 

1
0 15 20 

1 0.0112 0.07 0.0456 0.049 0.0611 0.0367 
5 0.0365 0.1191 0.0673 0.095 0.1177 0.0429 
10 0.0871 0.2113 0.099 0.2325 0.2257 0.1023 
15 0.1864 0.2735 0.1332 0.3805 0.3768 0.1684 
20 0.2669 0.4267 0.2189 0.4318 0.8173 0.197 
25 0.2106 0.3823 0.1502 0.4577 0.7028 0.1944 
30 0.3304 0.4181 0.1871 0.4428 0.8066 0.2133 
35 0.3803 0.4053 0.1985 0.4856 0.8117 0.2375 
40 0.4897 0.4747 0.2371 0.6171 0.8084 0.3408 
 45 0.613 0.3692 0.184 0.5839 0.8462 0.2364 
50 0.549 0.4485 0.2114 0.5048 0.9228 0.2672 
AvgMSE 0.2873 0.3272 0.1575 0.3892 0.5906 0.1852 

 
 
 
 
 



 
 
Figure1. Box and whisker plot of MSE values  
 
4. CLASSIFICATION  
 
In this section we test the performance of AIC in the 
classification arena. The results are compared with those 
from the test proposed by Dunn (1961) for multiple 
comparisons (based on studentized t distribution). Similar 
to the approach in function approximation, a neural 
network (3 hidden neurons) with randomized weights was 
constructed. Data (2 inputs and 1 output) was extracted 
from this neural network and was randomly split into 
learning and validation sets.  

Since the output is binary, it has to be converted 
to a form conducive to compute AIC. We employed the 
normalization method specified by Mirkin (1996), where 
the binary output is normalized according to the frequency 
of the classes in the data as given below. 

)P1(P

Pv
v

vv

v
normalized

−

−
=  where, Pv is frequency of v. 

 
Networks with varying number of hidden layer 

neurons were trained on the learning data and tested on the 
validation data. The AIC values of the different networks 
are given in table 5 and it is evident from the table that 
according to AIC the network with 2 hidden neurons is the 
best. The studentized t test mentioned above yielded the 
confidence interval of [0,0] for the difference in error 
proportions of any pair of networks (because of identical 
error proportions) and hence, according to it, all networks 
are identical. The close values of AIC also indicate the 
same phenomenon (the difference in values is because AIC 
compensates for the model complexity). The reason is the 
easily separable data generated by the original network as 
shown in Figure 2. 
 
 
 

Table 5. AIC values of different networks 
 
Hidden neurons AIC 
2 -1144.2 
3 -1136.2 
5 -1120.2 
10 -1080.2 
15 -1040.1 
20 -1000.2 

 

 
 
Figure2. Training Data from teacher network  
 

Similar to the function approximation example, a 
generalization test with inputs induced with white gaussian 
noise was performed on all the networks. The results are 
given in Table 6, which shows that all the networks are in 
fact identical. The entries of the table are the classification 
error proportions. 

 
Table 6. Error proportions when simulated in a noisy 
environment 
 

 Neurons 
 
  
Noise 
(dBW)         2 3 5 10 15 20 
1 0.27 0.27 0.27 0.27 0.27 0.27 
5 0.37 0.37 0.37 0.37 0.37 0.37 
10 0.40 0.40 0.40 0.40 0.40 0.40 
15 0.35 0.35 0.35 0.35 0.35 0.35 
20 0.45 0.45 0.45 0.45 0.45 0.45 
25 0.38 0.38 0.38 0.38 0.38 0.38 
30 0.42 0.42 0.42 0.42 0.42 0.42 
35 0.55 0.55 0.55 0.55 0.55 0.55 
40 0.30 0.30 0.30 0.30 0.30 0.30 
45 0.47 0.47 0.47 0.47 0.47 0.47 
50 0.72 0.72 0.72 0.72 0.72 0.72 

 



 
A real world problem in the form of EColi dataset 
(available by anonymous ftp from 
ftp://ftp.ics.uci.edu/pub/machine-learning-databases/) was 
selected for further analysis of these evaluation strategies.  
Table 7 details the composition of this dataset (8 inputs 
and 8 classes). As before, the data was normalized to 
facilitate computation of AIC and this was done using the 
technique specified by Mirkin (1996) and shown below. 

∑−
−

=

v

2
v

v
normalized

P1

Pv
v  

 
The AIC values and the confidence intervals on 

the error proportions are given in Tables 8 and 9 
respectively. From Table 8, it is evident that the AIC 
values indicate an inferior classification capability 
(positive AIC values) and that the network with 2 hidden 
neurons is the best of the lot. From Table 9, it can be seen 
that none of the classifiers have identical classification 
capabilities (no closed interval containing ‘0’) and that 
their performance is in the order 3,6,5,4,2,1. 
 
Table7. Classes in the Ecoli dataset  
 
Class 
ID 

Class Name Number of 
patterns 

CP Cytoplasm 143 
IM inner membrane without 

signal sequence 
77 

PP Periplasm 52 
IMU inner membrane, un-

cleavable signal sequence 
35 

OM outer membrane 20 
OML outer membrane lipoprotein 5 
IML inner membrane lipoprotein 2 
IMS Inner membrane, cleavable 

signal sequence 
2 

 
Table 8. AIC values of networks developed for classifying 
the EColi dataset 
 
# of Hidden Neurons AIC 
2 146.5111 
3 170.166 
5 199.6422 
10 299.781 
15 406.0171 
20 472.2449 

 
 
 
 

 
Table9. Confidence Intervals for difference in error  
 

 
The test of generalization accomplished by 

inducing additive white gaussian noise yielded the error 
proportions shown in Table 10. It is evident from the 
average error values and box plot in Figure 3 that network 
3 is in fact the best and the performance of the networks is 
in the order 3,4,6,5,2,1 which is close to what is concluded 
from the above test. This is also in total contradiction to 
that indicated by AIC. 
 
Table10. Error proportions when simulated in noisy 
environment 
 

Neurons     
 
 Noise 
(dBW) 2 3 5 10 15 20 
1 0.6634 0.6436 0.5545 0.6238 0.5941 0.5446 
5 0.6634 0.703 0.5248 0.6634 0.703 0.7129 
10 0.8218 0.7921 0.6634 0.6634 0.7921 0.7723 
15 0.8515 0.8218 0.6238 0.6832 0.6931 0.802 
20 0.8218 0.802 0.703 0.703 0.7921 0.7822 
25 0.8614 0.8416 0.6931 0.7624 0.7822 0.8119 
30 0.8515 0.8515 0.6931 0.6535 0.802 0.7228 
35 0.8416 0.7525 0.7129 0.6634 0.802 0.7426 
40 0.8515 0.7723 0.6634 0.6832 0.7525 0.7624 
45 0.8416 0.8416 0.7129 0.6832 0.7228 0.7525 
50 0.8614 0.8416 0.7129 0.703 0.7723 0.7426 
Avg Error 0.8119 0.7876 0.6598 0.6805 0.7462 0.7408 

 
 
 
 

M
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l 2 3 4 5 6 

1 
0.0037718  
0.01603 

0.19189 
0.20415 

0.12258 
0.13484 

0.16219 
0.17445 

0.17209 
0.18435 

2   
0.18199 
0.19425 

0.11268 
0.12494 

0.15229 
0.16455 

0.16219 
0.17445 

3     
-0.075436 
-0.063178 

-0.035832 
-0.023574 

-0.025931 
-0.013673 

4       
0.033475 
0.045733 

0.043376 
0.055634 

5         
0.0037718 
0.01603 



 
 
Figure 3. Box and whisker plot of MSE values  

 

5. CONCLUSIONS 
 
In this paper the model selection problem is studied in two 
of the most popular learning tasks, i.e. function 
approximation and classification. A desirable quality in 
any evaluation criteria is its capacity to indicate the 
tradeoff between precision and complexity of the 
underlying models. It is also particularly desirable to have 
a universally applicable criterion as the algorithms 
involved in machine learning and statistical approximation 
methods yield models that are extremely dissimilar in form 
and complexity.  
 

Multiple comparison procedures such as the 
Hochberg & Tamhane test for function approximation and 
studentized t test for classification can point to significant 
differences in the approximation capabilities of the 
models. However these tests do not take into account the 
complexity of the models. The Akaike Information 
Criterion, designed to take into account the complexity as 
well as the precision of the model, was seen to perform 
extremely well in the function approximation arena while 
it falters in the classification domain. Studentized t test 
yields a better evaluation strategy when compared to AIC 
for the classification problems. However it has to be noted 
that this (in fact any statistical test) does not take into 
account the complexity of the model. A possible solution 
to this problem is to use m-fold cross validation to identify 
the candidate models. These models can be further filtered 
by using the comparison techniques. 
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