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Abstract

We introduce a performance evaluation methodology called
Perturbation Detection Rate (PDR) analysis, for measuring
performance of background subtraction (BGS) algorithms. It has
some advantages over the commonly used Receiver Operation
Characteristics (ROC) analysis. Specifically, it does not require
foreground targets or knowledge of foreground distributions. It
measures the sensitivity of a BGS algorithm in detecting low
contrast targets against background as a function of contrast, also
depending on how well the model captures mixed (moving) back-
ground events. We compare four algorithms having similarities
and differences. Three are in [2, 3, 5] while the fourth is recently
developed, called Codebook BGS. The latter algorithm quantizes
sample background values at each pixel into codebooks which
represent a compressed form of background model for a long
image sequence.
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1. Introduction
The capability of extracting moving objects from a video se-
quence captured using a static camera is a typical first step
in visual surveillance. A common approach for discriminat-
ing moving objects from the background scene is detection
by background subtraction. The idea of background sub-
traction is to subtract or difference the current image from
a reference background model. The subtraction leaves only
non-stationary or new objects.

Some background models assume that the series of in-
tensity values on a pixel can be modeled by a single uni-
modal distribution. This basic model is used in [1, 2]. How-
ever, a single-mode model cannot handle multiple back-
grounds, such as waving trees. The generalized mixture of
Gaussians (MOG) has been used to model complex, non-
static backgrounds [3, 4]. The MOG has some disadvan-
tages. Background having fast variations cannot be accu-
rately modeled with just a few Gaussians, causing prob-
lems for sensitive detection. To overcome these problems,

a non-parametric technique [5] was developed for estimat-
ing background probabilities at each pixel from many recent
samples over time using Kernel density estimation. It is able
to adapt very quickly to changes in the background process.

The codebook (CB) background subtraction algorithm
was intended to sample values over long times, without
making parametric assumptions. It might be applicable to
compressed video, which often has unusual, discontinuous
distributions, as well as to uncompressed video. Mixed
backgrounds can be modeled by multiple codewords, while
brightness and color are separated.

When comparing BGS algorithms, ROC analysis is of-
ten employed when there are known background and fore-
ground (target) distributions [8]. The ROC curves only
measure the detection sensitivity for detecting a particular
foreground against a particular background. There are as
many ROC curves as there are possible different foreground
targets. In addition, it will require considerable experimen-
tation and ground-truth evaluation to obtain accurate false
alarm rates (FA) and the miss detection rates (MD). How-
ever, in typical video surveillance applications, we usually
are given a background scene for a fixed camera, but we
do not or can not know what might possibly move in the
scene as foreground objects. The perturbation method pre-
sented here, called perturbation detection rate (PDR) anal-
ysis, can measure the sensitivity of a BGS algorithm with-
out assuming knowledge of the actual foreground distribu-
tion. Rather, it measures the detection of a variable, small
(“just-noticeable”) difference from the background, obtain-
ing a foreground distribution by assuming that the fore-
ground might have a distribution locally similar in form to
the background, but shifted or perturbed. The detection is
measured as a function of contrast, the magnitude of the
shift or perturbation in uniform random directions in RGB.

In Section 2, we briefly describe the codebook-based
method which is not given in the references. Then the per-
formance evaluation technique, PDR analysis, is presented
in Section 3 along with results for the present four algo-
rithms. Conclusion and future work are given in Section
4.
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2. Codebook-based Background Sub-
traction

The codebook BGS algorithm adopts a quantiza-
tion/clustering technique, motivated by Kohonen [6, 7],
to construct a background model from long observation
sequences. For each pixel, it builds a codebook consisting
of one or more codewords. Samples at each pixel are
clustered into the set of codewords based on a color
distortion metric together with a brightness ratio. Not all
pixels have the same number of codewords. The clusters
represented by codewords do not necessarily correspond
to single Gaussian or other parametric distribution. Even
if the distribution at a pixel were a single normal, there
could be several codewords for that pixel. The background
is encoded on a pixel by pixel basis. Thus a pixel is rep-
resented by a codebook which consists of one or multiple
codewords.

Detection involves testing the difference of the current
image from the background model with respect to color and
brightness differences. Unlike MOG or the kernel methods
[5], the codebook method does not involve floating point
calculation of probabilities which can be costly. Indeed, the
probability estimate in [5] is dominated by the nearby train-
ing samples. The CB method simply computes the distance
of the sample from the nearest rescaled cluster mean. This
is very fast and shows little difference in detection com-
pared with the probability estimate. If an incoming pixel
meets two conditions, it is classified as background - (1) The
color distortion to some codeword is less than the detection
threshold, and (2) its brightness lies within the brightness
range of that codeword. Otherwise, it is classified as fore-
ground. To cope with the problem of illumination changes
such as shading and highlights, the CB method does not use
RGB values directly. Brightness is often the largest source
of variation, not intrinsic color. Physically these are differ-
ent as well. The CB method calculates a brightness differ-
ence (a ratio of RGB absolute values) and a color difference
which rescales codeword RGB values to the brightness of
the current, tested pixel.

Figure 1 shows a typical application of the CB algorithm.

3. Performance Evaluation

In this section, we propose a new methodology, called Per-
turbation Detection Rate (PDR) Analysis, for measuring
performance of BGS algorithms, which is an alternative to
the common method of ROC analysis. The purpose of PDR
analysis is to measure the detection sensitivity of a BGS
algorithm without assuming knowledge of the actual fore-
ground distribution. The basic idea is to measure how far
apart the two distributions must be in order to achieve a cer-
tain detection rate, or stated otherwise, given a false alarm
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Figure 1: Background subtraction result using the codebook-
based method.

rate (FA-rate), to determine detection rate as a function of
the difference of the foreground from the background. It
is similar to theJust Noticeable Difference(JND) typically
used in comparing psychophysical magnitudes.

In general, detection accuracy depends on the algorithm
and its parameters, shapes of the foreground and back-
ground distributions, and how far apart they are. In ROC,
we assume we are given both foreground and background
data of particular distribution shape and separation. We
may vary the algorithm’s parameters to obtain a certain
combined false alarm rate and miss detection rate (or de-
tection rate). Whereas, in PDR, we do not need to know
exactly what the distributions are. The basic assumption
made is that the shape of the foreground distribution is lo-
cally similar to that of the background distribution; how-
ever, foreground distribution of small (”just-noticeable”)
contrast will be a shifted or perturbed version of the back-
ground distribution. This assumption is fairly reasonable
because, in modeling video, any object with its color could
be either background or foreground, e.g., a parked car could
be considered as a background in some cases; in other cases,
it could be considered a foreground target. Furthermore, by
varying algorithm parameters we determine not a pair of er-
ror rates but a relation among the false alarm and detection
rates and the distance between the distributions.

Given the parameters to achieve a certain fixed FA-rate,
the analysis is performed by shifting or perturbing the entire
BG distributions by vectors in uniformly random directions
of RGB space with fixed magnitude∆, computing an aver-
age detection rate as a function of contrast∆. It amounts to
simulating possible foregrounds at certain color distances.
In the PDR curve, we plot the detection rate as a function of



the perturbation magnitude∆ given a particular FA-rate.
First, we train each BGS algorithm onN training back-

ground frames, adjusting parameters as best we can to
achieve a target FA-rate which would be practical in pro-
cessing the video. Typically this will range from .01% to
1% depending on video image quality. To obtain a test fore-
ground at color contrast∆, we pass through theN back-
ground frames again. For each frame, we perturb a random
sample ofM pixel values (Ri, Gi, Bi) by a magnitude∆ in
uniformly random directions.

The perturbed, foreground color vectors (R′, G′, B′) are
obtained by generating points randomly distributed on the
color sphere with radius∆. Then we test the BGS algo-
rithms on these perturbed, foreground pixels and compute
the detection rate for the∆. By varying the foreground
contrast∆, we obtain an monotone increasing PDR graph
of detection rates. In some cases, one algorithm will have a
graph which dominates that of another algorithm for all∆.
In other cases, one algorithm may be more sensitive only in
some ranges of∆. Most algorithms perform very well for a
large contrast∆, so we are often concerned with small con-
trasts (∆ < 40) where differences in detection rates may be
large.

In this study, we compare four algorithms shown in Ta-
ble 1. Since the algorithm in [5] accepts normalized colors
(KER) or RGB colors (KER.RGB) as inputs, it has two sep-
arate graphs. Figure 2 shows the representative images from
four test videos.

To generate PDR curves, we collected 100 empty con-
secutive frames from each video. 1000 points are randomly
selected at each frame. That is, for each∆, (100)×(1000)
perturbations and detection tests were performed. Those
100 empty frames are also used for training background
models. During testing, no updating of the background
model is allowed. For the non-parametric model in KER
and KER.RGB, a sample size 50 was used to represent the
background. The maximum number of Gaussians allowed
in MOG is 4 for the video having stationary backgrounds
and 10 for moving backgrounds. We do not use a fixed
FA-rate for all four videos. The FA-rate for each video is
determined by these three factors - video quality, whether
it is indoor or outdoor, and good real foreground detection
results for most algorithms. The FA-rate chosen this way
is practically useful for each video. The threshold value for
each algorithm has been set to produce a given FA-rate. In
the case of MOG, the learning rate,α, was fixed to 0.01 and
the minimum portion of the data for the background,T , was
adjusted to give the desired FA-rate. Also, the cluster match
test statistic was set to 2 standard deviations. Unless noted
otherwise, the above settings are used for the PDR analysis.

Figures 4 and 5 show the PDR graphs for the videos in
Figures 2(a) and 2(b) respectively.

For the indoor office video, consisting almost entirely of

stationary backgrounds, CB and UNI perform better than
the others. UNI, designed for unimodal backgrounds, has
good sensitivity as expected. KER performs intermediately.
MOG and KER.RGB do not perform as well for small con-
trast foreground∆, probably because, unlike the other al-
gorithms, they use original RGB variables and don’t sepa-
rately model brightness and color. MOG currently does not
model covariances which are often large and caused by vari-
ation in brightness. It is probably best to explicitly model
brightness. MOG’s sensitivity is consistently poor in all our
test videos, probably for this reason.

For the outdoor video, all algorithms perform somewhat
worse even though the FA-rate has been increased to 1%
from .01%. CB and KER, both of which model mixed back-
grounds and separate color/brightness, are most sensitive,
while, as expected, UNI does not perform well as in the
indoor case. KER.RGB and MOG are also less sensitive
outdoors, as before indoors.

Figure 3 depicts a real example of foreground detection,
showing real differences in detection sensitivity for two al-
gorithms. These real differences reflect performance shown
in the PDR graph in Figure 6. The video image in Figure
3(a) shows someone with a red sweater standing in front of
a brick wall of somewhat different reddish color. There are
detection holes through the sweater (and face) in the MOG
result (Figure 3(b)) . The CB result in Figure 3(c) is much
better for this small contrast. After inspection of the image,
the magnitude of contrast∆ was determined to be about
16 in missing spots. This was due to difference in color
balance and not overall brightness. Figure 6 shows a large
difference in detection for this contrast, as indicated by the
vertical line.

Figures 7, 8 and 9 show how sensitively the algorithms
detect foregrounds against a scene containing moving back-
grounds (trees) as well as stationary surfaces. In order to
sample enough moving background events, 300 frames are
allowed for training. As for previous videos, a PDR graph
for the ‘parking lot’ video is given in Figure 7. Two win-
dows are placed to represent ‘stationary’ and ‘moving back-
grounds’ as shown in Figure 2(d). PDR analysis is per-
formed on each window with the FA-rate obtained only
within the window - a ‘window’ false alarm rate (instead
of ‘frame’ false alarm rate).

Since most of the frame is stationary background, as ex-
pected, the PDR graph (Figure 8) for the stationary back-
ground window is very close to that for the entire frame.
On the other hand, the PDR graph (Figure 9) for the mov-
ing background window is generally shifted right, indicat-
ing reduced sensitivity of all algorithms for moving back-
grounds. Also, it shows differences in performance among
algorithms, with CB and KER performing best. These re-
sults are qualitatively similar those for the earlier example
of outdoor video shown in Figure 5. We can offer the same



(a) indoor office (b) outdoor woods

(c) red-brick wall (d) parking lot

Figure 2:The sample empty-frames of the videos used for the experiments

Name Background subtraction algorithm
CB codebook-based method described in Section 2

MOG mixture of Gaussians described in [3]
KER andKER.RGB non-parametric method using kernels described in [5]

UNI unimodal background modeling described in [2]

Table 1: four algorithms used in performance evaluation

(a) original frame of a person in a red sweater (b) detection using MOG (c) detection using CB

Figure 3:Sensitive detection at small delta
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Figure 4:PDR for ’indoor office’ video in Figure 2(a)

Detection rate at perturbation 
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Figure 5:PDR for ’outdoor woods’ video in Figure 2(b)

Detection rate at perturbation 
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(video 'red-brick wall' / false alarm rate = .01%)
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Figure 6:PDR for ‘red-brick wall’ video in Figure 2(c)

Detection rate on frame at perturbation 
�

(video 'parking lot' / 'frame' false alarm rate = .1%)
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Figure 7:PDR for ‘parking lot’ video in Figure 2(d)



Detection rate on window at perturbation 
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(video 'parking lot' / 'window' false alarm rate = .1%)
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Figure 8: PDR for window on stationary background (Figure
2(d))
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Figure 9:PDR for window on moving background (Figure 2(d))

explanation as before: CB and KER were designed to han-
dle mixed backgrounds, and they separately model bright-
ness and color. In this video experiment, we had to increase
the background sample size of KER to 270 frames from 50
in order to achieve the target FA-rate in the case of the mov-
ing background window. It should be noted that CB, like
MOG, usually models background events over a longer pe-
riod than KER.

4. Conclusion and Future Work

After a brief description of the codebook-based BGS algo-
rithm, we presented a perturbation method for measuring
sensitivity of BGS algorithms. The PDR method does not
require foreground targets in videos or knowledge of actual
foreground distributions. PDR analysis does not consider
all possible background or foreground distributions; it con-
siders only those relevant to one video, scene and camera.
It assumes that the foreground, when it has small contrast to
the background locally, has a distribution similar in form to
the background, but shifted or perturbed.

PDR analysis has two advantages over the commonly
used ROC analysis: (1) It does not depend on knowing fore-
ground distributions, (2) It does not need the presence of
foreground targets in the video in order to perform the anal-
ysis, while this is required in the ROC analysis. Because of
these considerations, PDR analysis provides practical gen-
eral information about the sensitivity of algorithms applied
to a given video scene over a range of parameters and FA-
rates. In ROC curves, we obtain one detection rate for a
particular FA-rate for a particular foreground and contrast.

We have applied the PDR analysis to four various BGS
algorithms and four videos of different types of scenes. The
results seem to be understandable, reflecting obvious dif-
ferences among the algorithms as applied to the particular
type of background scenes. We also provided a real video
example of differences among the algorithms with respect
to sensitive foreground detection which appears consistent
with the PDR simulation.

There are limitations. The method doesn’t model mo-
tion blur of moving foreground objects. Also in the case
of mixed (moving) backgrounds, the simulated foreground
distributions will be mixed (as plants or flags moving in the
foreground); usually, though, foreground targets are from
unimodal distributions. It should be noted, however, that
the overall detection rates will be nearly the same if the clus-
ters of the mixed distributions are well separated (compared
to the usual small contrast delta). An important limitation
is that foreground objects often will have shading and re-
flection effects on backgrounds, and these are ignored al-
though they are important for choosing a proper, practical
false alarm rate for real video analysis. (We have chosen
practical false alarm rates for the videos used in this study.)



The present method would seem to be useful for quali-
tative comparison of sensitivity of different algorithms, as
well as comparison of choice of parameters for a particu-
lar algorithm with respect to sensitivity. In the future, the
present method could be extended to measure local detec-
tion rates throughout the frame of the scene or varying over
time. This might have application to localized parameter
estimation, e.g. of detection or adaptation parameters in
different parts of the frame of the scene.
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