
Software Design and Testing Using Petri Nets: A Case Study Using a 
Distributed Simulation Software System * 

S. Ramaswamy**, R. Neelakantan 
Software Automation and Intelligence Laboratory, Department of Computer Science 

Tennessee Technological University, Cookeville, TN 38505 
Phone: (931)-372-3691. Email: srini@acm.org / srini@ieee.org 

 
ABSTRACT:  - This paper presents the application of 
Petri Nets in software design and testing using a distributed 
simulation application for naval radar interference 
resolution as a case study. Good software systems design 
promotes the “minimal” exertion of control over the 
different subsystem components; nevertheless, the 
knowledge of “critical” states of operation within one 
subsystem can orient other subsystems to react 
intelligently.  Hence, a methodology for determining all the 
important “logical areas” of a subsystem is most crucial. 
The approach used here is based on a technique called 
Minimal Transition Cover Sets, or MTCS, which is a 
refinement of the minimal transition invariants of the 
corresponding Petri Net model of the system [1]. It allows 
for selective information sharing; one of the most 
important attributes of good object-oriented design. This 
paper explores this approach to aid the system designer 
build some high level knowledge about the different 
subsystem components. Using this high-level knowledge, 
the designer can then choose an appropriate design from a 
group of designs and thus can be in a position to 
qualitatively compare and contrast two or more design in 
terms of information sharing capabilities [2]. A further 
enhancement of this MTCS approach involves its use in 
building software test cases. It allows for the development 
of the necessary test cases in the verification of software 
system modules. 

I. INTRODUCTION 
Software systems designed to be distributed, 

interactive and intelligent (in a domain-specific sense), 
with ubiquitous human interfaces and the ability to exhibit 
intelligent cooperative behaviors will pave the way for 
achieving agile and flexible automation. With the advent of 
complex systems in modern day industry that operate in 
dynamically changing environments, software 
development for such systems calls for addressing the 
issues of increasing complexities in managing processes 
and communication between processes. It is becoming all 
the more imperative that the software systems be robust 
and error free in such real-world applications. Thus, 
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demonstrating intelligent decision making capabilities 
while working with other subsystem entities is critical. 
This research is part of an effort towards the development 
of such flexible software systems.  Thus, developing 
methods, tools and methodologies that aid in the design of 
software systems using such scalable, basic underlying 
structures is the principle objective of this research.  

Such software modules (or objects, procedures, sub-
systems as referred to in different programming and 
development paradigms) that make up a flexible software 
system are termed Intelligent Coordinating Entities, or 
ICE.  The ICE concept is based on the observation that if 
software modules can be designed with a simple, well-
defined underlying symmetrical coordination framework, 
(similar to the formation of snow crystals that come in 
infinitely different shapes and combine in various ways to 
form snowflakes) then they can be combined in various 
ways to implement different kinds of software applications 
in a multitude of application domains.  

This paper1 is organized as follows: Section II 
provides an overview of the Intelligent Coordinating 
Entities (ICE) concept, the use of Petri Nets for 
implementing ICE elements and their applicability to 
designing better software systems. Section III provides a 
brief introduction to the example distributed simulation 
system, the overall Petri Nets model of the system and its 
various subnets. Section IV provides the design analysis as 
well as test case design for “necessary” software 
verification. Section V concludes the paper. 

II. INTELLIGENT COORDINATING ENTITIES 
The ICE design concept goes a step further than 

current agent based, and other related, paradigms to 
designing intelligent systems. ICE-based design seeks to 
extend current agent-oriented design approaches to 
implicitly include a structured coordination framework, 
which can be implemented through different enabling 
technologies (such as DCOM/CORBA/JINI) - necessary to 
bring such intelligent coordinated behaviors among 
constituent modules (ICE elements, or ICICLES) in 
modern-day systems to fruition. In a system, an ICICLE, 
therefore, should not only consist of a representation, 
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decision and reaction structure, but also include the 
mechanisms to orchestrate such reactions in a coordinated 
fashion using a well-defined communication structure as 
the underlying basis. Thus, a communication-centric 
structure forms the core of every ICE element (similar to 
the hexagonal structure in the snow crystal analogy). 
Depending on the enabling technology used, it may or may 
not be necessary to include the code for the communication 
structure within each ICICLE. However, depending upon 
the other players in the coordination, an ICICLE can 
selectively choose the appropriate information it is willing 
to share with the group by means of a dynamic 
"information-sharing" model. There are two fundamental 
issues to designing such ICE elements - its communication 
and coordination structure.  

The basis for 
every ICE element is 
a well-defined, 
flexible 
communication 
structure. Therefore, 
a software system 
designed with ICE 
elements, or 
ICICLES, assumes a 
networked structure 
of dynamically 
interacting ICICLES. 
The interaction 
capability of an 

E may be 
either time-invariant 
or time-dependent. 

Hence, it may be different at different time instances 
depending upon the composition and needs of the system 
(may be based on system goals and/or objectives) and the 
other elements involved in the interaction. Each ICICLE 
may or may not have a corresponding hardware resource 
associated with it - the implicit assumption being that all 
hardware devices have an inherent ability to communicate 
with other active elements within the group. This 
communication capability may be platform and language-
independent and hence can be brought forth by using any 
standard specifications such as DCOM, CORBA, JINI, 
etc., that provide immense distributed coordination 
capabilities. 

ICICL

Available printer
queue length

Incoming job request

Process job (one
active, rest queued)

Accept print job
Deny Print job

NACK / ACK
Completion

Petri Net Place

Petri Net Transition

Control token

Flow token  

Figure 1. Petri Net Model of a 
Simple Print Process 
Functionality 

The communication framework, while providing the 
flexibility of interaction, does not by itself make an 
ICICLE intelligent. Thus, on top of the above mentioned 
communication framework, a well-defined coordination 
capability has to be built. This is to be implemented by 
maintaining a dynamic "information-sharing" model 
accessible by each ICE element. This model is to be built 
and/or updated periodically and possibly maintained 
consistently across a network. Any ICICLE will use this 

information to verify the availability of a service or other 
such information. Servers may provide the necessary 
capabilities for model maintenance, while clients may not 
have this capability.  The model may be dynamically 
generated / updated at the server by exploding / imploding 
details on specific and available services depending on the 
interaction request from the client. With the server having 
the ability to either provide, or refer to a provider of, such a 
service, the client will be able to assimilate information 
about the server and hence act either pro-actively or 
reactively. This ability to interact and coordinate allows the 
embedding of domain-specific intelligence within client 
applications.  

For example, assume that this technique is been used 
to build an automated factory floor. For simplicity, assume 
that each factory floor resource, would therefore, in 
essence be designed as an ICICLE. Further assume that a 
resource, say R1, at the beginning of a job flow is stuck on 
some job. With its communication-centric structure, R1 is 
able to communicate this information to other members of 
the group, if it chooses to do so. Correspondingly, other 
members of the group can reevaluate their goals / strategies 
on spending their resources more productively by reacting 
intelligently to this information. However, in designing 
such a system, the first order of priority is to devise a 
mechanism to discern the information to be shared! To 
accomplish this, as part of the development process, we 
propose to use a Petri-net based analysis technique to 
analyze each ICICLE modeled by a Petri Net model and 
correspondingly extract the “information” to be shared 
using PN invariants. 

An ICE element must be able to readily perceive, 
appreciate, understand and demonstrate cognizant 
behavior. For this reason, a design method must first 
capture the important attributes of the functionality of the 
ICE element in its representation. In this regard, 
identification and handling of failures is of critical 
importance. A software modeling mechanism must 
therefore be flexible and sufficiently rich, to allow a 
designer represent and understand local failure behavior in 
detail. In our work, we use Hierarchical Time-Extended 
Petri Nets, or H-EPNs, [3] a hierarchical Petri-net 
modeling mechanism with the capability for selective 
expansion / contraction of subnets to model selective 
information sharing [1]. The base model for each ICICLE 
is derived by a bottom-up synthesis of smaller Petri net 
models, each of which pertains to an atomic (i.e., a well-
defined functionality such as the request and processing of 
a connection, a robot move operation, etc.) functionality of 
the ICICLE. Composing these models into one higher-level 
ICICLE model is accomplished by traditional Petri-net 
synthesis techniques. Models can be synthesized many 
times over to create a nesting of sub-models, called 
subnets. Depending upon the level of information-sharing 
detail these subnets can in real-time be either collapsed in 



to one subnet place or 
expanded by the ICICLE 
to derive the appropriate 
information to be 
shared. In detail, this 
occurs as follows: When 
a request for a service 
reaches a server from a 
client, the server first 
classifies the client to 
determine the level of 
information sharing 
required. Depending on 
this classification, the 
server may choose to 
collapse / expand some or all of the model details 
contained in its subnet models to create a dynamic model. 
Using this dynamic model, the appropriate information to 
be shared is determined and communicated to the client.  
Often, in addition to requesting the server to perform pre-
stated services, the client may require information about 
the server to "act" intelligently. For example, a print 
handling functionality on a machine on such a network 
may want to know if a particular printer is active 
and, if active, the length of its queue. With this 
information, the machine may decide to either 
submit its job to this printer or reroute it to another 
"less-taxed" printer. The printer ICICLE, therefore 
needs to have the ability to determine if it is busy 
and also the no of jobs it has on its queue (the 
number of tokens at the process job place in Figure 
1 using a dynamic model. It also communicates this 
information to the machine that is authorized to print 
to it. A simple Petri net model for such printer 
functionality is illustrated in Figure 1. It is to be 
noted that the "process job" place in Figure 1 can be 
further refined as a subnet to represent greater 
details of the print process. Also, a separate counting 
procedure can be integrated into the model to 
determine the length of the queue.  

In case of a print request from a machine that 
either does not have the authority, or has very 
minimal coordination privileges, to print to this 
printer, the printer may send back a "no 
acknowledgement" - NACK, or just relay back the 
information that it is busy. The flow tokens cause 
this subnet to become active in the coordination 
process.  If the print process model is represented in 
a higher-level net as a subnet without being 
expanded, the control token that represents the 
available queue length and the number of tokens in 
the process job place will not be  "visible". 
Therefore, the information on the queue length will 
not be available to this machine.  

III. EXAMPLE 
APPLICATION  

Interference detection and 
resolution among mobile naval radar 
units is critical to naval operations. 
Previous work in this area has 
involved the exploration of this 
problem in a distributed simulation 
environment using three 
communication approaches viz. 
Master-Slave (MS), Locally 
autonomous (LA), and Negotiation 
(NG) for coordinated interference 
resolution. In such applications, 

groups of ships work in close consensuses with one 
another for some collective and constructive goals. Hence, 
a study of their interaction and coordination mechanism is 
of extreme importance at the design stage for writing 
reliable and good software for such real-time systems. 
Since every ship in a naval group is associated with 
appropriate radar units for detecting and tracking purposes, 
hence, it is important that these radar units do not have 
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Figure 2. Overview of the Simulation Software 
System for Automated Interference Resolution 
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Figure 3. PN Model of the Distributed Simulation System 



frequency interference during operation.  For normal and 
proper operation of these radar units, it is imperative that 
interference-free frequency is available for each radar unit. 
Whenever interference occurs between radar units, a 
suitable mechanism needs to be adopted to resolve this 
interference. This detection and resolution process that is 
associated with these affected radars is of extreme 
importance in time-critical situations. 

Since, these radar units work in a dynamically 
changing environment, such as frequent change in 
direction, frequent change in coordinates of the ship and 
other such parameters that affect the frequency of 
operation, a need for automated negotiation for 
interference deduction and resolution between the affected 
radar units and a choice of an appropriate coordination 
framework is most desirable. 

Two important steps that have major impact in this 
automated negotiation for interference detection and 
resolution are (i) The process of determining interference, 
and, (ii) Resolution process of this interference. 

These two steps play very critical role in the proper 
and intelligent working of the naval radar units. Hence, due 
to time-restrictions only these two steps have been studied 
and modeled. The first step, basically deals with the actual 
process of interference deduction. Two ships are said to 

have interfering frequencies when their probability-of-
interference is greater than 0.001. This probability of 
interference Pint is a quantitative approach based on sound 
communication theory principles that tells us if 
interference can occur between two radars based on a set of 
parameters. So, the detection algorithm module determines 
(by reading the database for each pair of ship in the group) 
if the Pint value is greater than 0.001 and if so, switches to 
a particular mode of operation that resolves this 
interference. This mode of operation is a pre-computed 
mode for each ship based on the communication 
parameters such as position, direction etc. For more details, 
readers can refer to [5]. The second step involves the 
process of determining the mode of operation for each 
ship. The modules, switching algorithm and mode selection 
does exactly this. It reads the parameters for each pair of 
ship in the group from the database, and determines the 
mode of operation. This mode of operation is then written 
in to the database for that particular pair of ship. Since, this 
kind of an application envisaged a real-time application 
development process; hence, this problem was taken as a 
specific case study to develop a Petri Net model and show 
that analysis of Petri Nets does produce useful and 
important results for software design and testing. Begin a 
real time application simulation; hence it became 
imperative to build a good design (that is robust and 
scalable) and to build “necessary” test cases for testing. 
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Figure 4. PN Subnet Models for Interference 
Detection and Protocol Switching 

Currently we are working on two issues, namely: (i) 
building a Dynamic Switching Protocol (DSP) for 
switching between the three existing approaches based on 
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various conditions and simulated information. (ii) 
Developing advanced negotiation protocols that 
incorporate the advantages provided by the different modes 
in different situations. These protocols also allow several 
ships to negotiate at any given instant. Given this 
background, it is but appropriate to understand (i) the 
design of the system with respect to information shared 
between the various subsystems; and (ii) the “necessary” 
testing to be performed on the simulation system before a 
fieldable prototype is built.  The block diagram of the 
simulation software system is shown in Figure 2 and the 
Petri Net model is presented in Figure 3.  

The subnets for the interference detection and protocol 
switching algorithm are presented in Figure 4. The first 
subnet in Figure 4 is used for switching purposes. It reads 
the database for every pair of ship and for each pair, a 

mode is computed depending upon various ship and radar 
parameters. The other subnet in Figure 4 (on the right) is 
used for interference detection. In this subnet, each pair of 
ship is selected from the group. Based on its parameters 
such as frequency, position and other factors, the 
probability of interference is computed. If this value, Pint, 
is greater than a predetermined value (0.001), frequency 
interference is said to take place. So, in order to resolve 
this interference, a mode of resolution is selected from the 
database and dynamically switched to operate the radar 
units in one of the 3 possible modes namely, LA, MS and 
NG. This is process is then repeated for all pairs of ships in 
the group.  

The first subnet in Figure 5 illustrates the actual mode 
computation process between two interfering agents. For 

each interfering agent, Pla, Pms and Png (P is an 
evaluation Index for various 
modes) are determined which are 
based on sound principles from 
communication. Whichever value 
is less among Pla, Pms and Png 
that particular mode of operation is 
selected for that particular ship.  

The smallest value is 
determined by calling a simple 
minimum value determination 
subnet, which is illustrated in 
Figure 6. 

IV. DESIGN ANALYSIS 
AND TEST CASE 
DESIGN 

PN invariant analysis [2] were 
performed to identify the various 
minimal T-invariants [4] on all the 
models generated. These are 
illustrated in Table 1.Transitions 
with a ‘l’ followed by the 
corresponding subnet name 

represent loop back transition which have not been shown 
in any of the Petri Net models. They have been included in 
the design in order to build test cases for the individual 
modules and for the invariant analysis.  

When a PN is used to represent a software design 
structure, the T-Invariants obtained from the PN model 
gives all the independent sub-flows in the design. Based on 
these sub-flows, software testing can be done on the 
equivalent design. In order to generate the software test 
cases, MTCS algorithm [1] is used on the T-invariants 
generated. The algorithm for the MTCS transition is 
already presented in [1] and hence not presented here. 
Depending upon the design requirements of the software 
designer, the transitions from the invariants can either be 
refined to obtain the design choice transitions or testing 

Table 1. Minimal Invariants for the Various Subnets 

Subnet Name T-Invariants  
Switching Algorithm (sa) X1: t13 t14 t15 tlsa 

X2: t16 t19 t18 t17 
X3: t20 t21 t22 t23 t24 

Detection Algorithm (da) X1: t25 t26 tlda 
X2: t27 t29 t30 t31 t28 
X3: t32 t33 t34 t36 t37 t38 t41 t44 t45 t35 
X4: t32 t33 t34 t36 t37 t39 t42 t44 t45 t35 
X5: t32 t33 t34 t36 t37 t40 t43 t44 t45 t35 
X6: t32 t33 t34 t46 t35 

Mode Selection (ms) X1: t47 t49 tlms 
X2: t48 t50 t52 t54 t55 t58 t59 t60 t61 t62 t63 
X3: t48 t50 t51 t53 t55 t58 t59 t60 t61 t62 t63 
X4: t48 t50 t51 t53 t56 t57 t59 t60 t61 t62 t63 
X5: t48 t50 t52 t54 t56 t57 t59 t60 t61 t62 t63 

Access Database (adb) X1: t64 t66 t70 t72 tladb 
X2: t65 t67 t71 t73 tladb 

Minimum Value (mv) X1: t72 t74 t79 t81 tlmv 
X2: t72 t73 t76 t78 tlmv 
X3: t72 t73 t77 t80 tlmv 
X4: t72 t74 t75 t76 t78 tlmv 
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Figure 6. Minimum Value Detection Subnet 



choice transitions. The methodology used to obtain this 
refinement is discussed in detail in [1]. The decision 
associated with these transitions aid us in the design and 
testing of software. The transitions obtained from the 
design choice strategy aid in the decision of information 
hiding and encapsulation. Whereas the decision 
corresponding to the transitions obtained from the testing 
choice strategy can be used for building software test 
cases. These transitions correspond to the inner most 
conditions being checked in the actual software design. 
Building test cases on these decisions ensure that all 
independent sub-flows in the design have been checked or 
exercised at least once. Thus, building test cases on these 
MTCS transitions ensures that the equivalent software is 
being tested for their necessary and sufficient conditions. 
Applying the MTCS algorithm in [1], the various MTCS 
transitions were obtained. These are shown in Table 2.  
The following presents the design and testing analysis of 
the results obtained.  

A. Design Analysis 
Switching Algorithm Subnet 

The design choice transitions for this subnet are t15, 
t16, and t20 or t15, t18, and t20. These transitions in the 
original PN model correspond to different decisions being 
made. In the first set, transitions t15 and t16 corresponds to 
check that is made on the value of the variable ‘i’. These 
transitions are fired on the event that i becomes greater 
than the number of ships in the group (t15) or i is less than 
or equal to the number of ships in the group. This means 
that statements after this decision are executed repeatedly 
for every pair of ship in the group. These statements 
actually correspond to a particular mode being assigned for 
every ship pair. So, in the actual design, how this mode 
assignment is done need not be revealed to other 
subsystems. The only information that needs to be known 
is whether all the ships have been assigned a particular 
mode of operation. From the other set of transitions we can 
get information as at which ship pair is being currently 
operated on. Even this decision might be quite crucial or 
relevant to other subsystems.  So, extending this idea to the 

OOD, the statements that are executed after this decision 
(is evaluated to be true) can be declared as private methods 
and the variables ‘i’ and ‘j’ could be declared as a public 
variable. 
Detection Algorithm subnet: 

For this subnet, the design choice transitions are t26, 
t27, and t36. Again t26 and t27 transitions correspond to 
the value of ‘i’ being checked. That is, inside this subnet 
the value of ‘i’ is checked with the number of ships in the 
group. This decision actually correspond to deciding 
whether all ship pairs have been formed and if there is an 
interference among any pair, a suitable mode is switched 
and interference is resolved. So, this decision might be 
crucial for other subsystems. How this interference is 
resolved can actually be abstracted and hence in terms of 
OOD, those processes that deal with this resolving 
technique can be declared as private and the variables ‘i’ 
and ‘j’ could be declared as public. Transition t36 is again 
is a further entry point decision in this subnet that can be 
clubbed with other higher decisions inside this subnet. 
Mode Selection subnet:  

The design choice transitions are t48 and t49. The 
decision that correspond to these transitions is whether the 
number of interfering agents are less than or equal to two. 
For each of the interfering agent, a particular mode of 
operation is determined depending on a set of parameters. 
So, the decision of finding out whether a mode is been 
determined for each of the interfering ship might be crucial 
for other subsystems. So, the variable a1 can be declared as 
public and the methods and processes that follow this 
decision can be declared as private. 
Access Database subnet:  

Here the transitions t64 and t65 correspond to the 
decision of whether a write is to be made in to the database 
or whether a read is to be done on a database. This decision 
of whether the database is in the write state or a read state 
might be useful for other subsystems. Hence, access data 
base method might be declared as a public method. 
Minimum Value subnet:  

 Here the transitions 
are t73 and t74 which 
correspond to the 

cision of checking 
the first value with 
the second value. 
Only from this 
decision can one go 
on further to find out 
the smallest value. 
Since, this subnet 
might be useful at 
other places that 
might need to 

de

Table 2.  Various MTCS Transitions 

Subnet Name Greedy Choice 
Transitions 

Design Choice 
Transitions 

Testing Choice 
Transitions  

Switching Algorithm t13 t16 t20 t15 t16 t20 or 
t15 t18 t20 

t15 t18 t20 

Detection Algorithm t25 t27 t32 t26 t27 t36 or   
t26 t31 t38 t39 t40 t46 

t26 t31 t38 t39 t40 
t46 

Mode Selection t47 t48 t48 t49 or 
t52 t55 t56 t51 t49 

t52 t55 t56 t51 t49 

Access Database t64 t65 t64 t65 t64 t65 
Minimum Value t72 t73 t74 or 

t75 t76 t77 t79 
t75 t76 t77 t79 



compute the minimum value, hence this method can be 
declared as a public method. 

B. Test Case Design 
The test cases derived from the MTCS transitions give 

all the necessary test cases that need to be performed for 
that particular module or subnet to be deemed error free. 
On the performance of these tests, the designer can be 
reasonably confident about the proper functioning of the 
modules as “independent and self contained”. The 
summary of the test cases for all the modules is shown in 
Table 3. Various modules were integrated in succession to 
form larger net models and individual test cases were 
generated for such modules. Due to the length restrictions 
of this paper, we are not presenting these results. Interested 
readers may contact the author for these results.  

V. CONCLUSIONS 
The ICE-based design approach is (i) a clear and 

simple approach to design a software system that is 
distributed, interactive and has the ability to coordinate and 
communicate with other software, hardware and/or human 
elements. ICICLES will allow standard implementation 
patterns as well as facilitate the adoption of reusable 
software components that increases reliability and product 
quality. It will help reduce project management costs by 
keeping project teams focused on delivering improved 
functionality on well-defined ICICLES.  
Unique market requirements force organizations to quickly 
adapt to the rapid changes. Generic solutions will not 
always solve particular problems and meet the demands of 
certain industries. This issue raises the need for solutions 
that are scaleable, flexible, and can be tailored to the 
special project needs. Since each ICICLE will contain a 
mechanism for interaction with other members in the group 
and a dynamic modeling mechanism to determine 
"information-sharing" needs, it will provide a flexible 
framework for designing evolutionary and business 
software systems. 

ICICLES are based on a flexible communication 
structure with incrementally built coordination structures. 
Reasoning and other application-specific modules may be 
built based on domain-specific needs. Thus, software 
systems can be built as a combination of components that 
vary in their capabilities ranging from ones that are highly 
intelligent to those that are worker modules. Moreover, use 
of a dynamic cooperation model allows for components 
that can have a time-dependent interaction behavior. In a 
system with many ICICLES, the presence or absence of a 
particular component would thus be of little significance as 
long as the system is build with redundant structures - if a 
component is present and is willing to cooperate for 
providing some required service it will be utilized. This 

allows the required flexibility to leverage industry and 
vendor partnerships. 

There are a wide variety of issues to be addressed 
before the viable realization of this technique. Some of the 
basic issues to be addressed by our research include the 
following. (i) Should a dynamic PN model be generated 
and used exclusively at run time or can it be a pseudo-
dynamic entity? (ii) Petri-net models are not immune to the 
state-space explosion problem. If so, what are the 
performance limitations of the dynamic generation of 
"huge" Petri net models. Can a tradeoff be achieved at any 
level either for the maximum number of allowable subnet 
expansions or for the number of places / transitions in the 
net?  (iii) Most current algorithms to determine T-
invariants use a matrix based representation scheme. Such 
a scheme results in the manipulation of huge "sparse" 
matrices. Are there better algorithms to determine the 
minimal T-invariants? (iv) Can we build a 
certification/reward mechanism for ICICLE coordination? 
If so, how is this to be done - by static rules or by dynamic 
derivation of reward units? (v) What is a good measure of 
ICICLE and system stability? How does coordination 
affect stability? (vi) Can ICICLES coordinate over 
geographically distant networks - possibly using the world-
wide-web as a backbone? How is performance affected in 
such a case? We hope that future research into these issues 
will enable the development of distributed, interactive (in a 
domain-specific sense) systems with ubiquitous human 
interfaces and the ability to exhibit intelligent cooperative 
behaviors. When research into the above issues is 
completed, it will allow the development of a repeatable, 
multi-phase process (of designing ICICLES) to yield 
production-caliber, deployable solutions in the shortest 
possible time.  
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Table 3. Recommended Test Cases for the Various Modules 
Subnet name Transition involved Test Cases Statement being executed Importance of this test 

Switching Algorithm t15 01. i > n 
02. i = n 
03. i < n 

Exit the subnet Loop Check 

 t18 04. i < n 
05. i = n 
06. j < n 

j=1 and i++ Whether Incrementing of i takes place at the correct values of i and j 
to account for all ship pairs 

 t20 07. i < n 
08. i = n 
09. j = n 
10. j < n 
11. j = n 

Actual mode selection operation Whether a mode is determine for all ships in the group 

Detection Algorithm 
 

t26 01. i > n 
02. i = n 
03. i < n 

Exit the subnet Loop Check 

 t31 04. i < n 
05. i = n 
06. j > n 

j=1 and j++ Whether Incrementing of i takes place at the correct values of i and j 
to account for all ship pairs 

 t38 07. i < n 
08. i = n 
09. j < n 
10. j = n 
11. Pint >.001 
12. Pint = .001 
13. Sel Mode = LA 

Operate in LA mode Forcing execution to check whether ship pair can operate in the LA 
mode 

 t39 14. i < n 
15. i = n 
16. j < n 
17. j = n 
18. Pint >.001 
19. Pint = .001 
20. Sel Mode = NG 

Operate in NG mode Forcing execution to check whether ship pair can operate in the NG 
mode 

 t40 21. i < n 
22. i = n 
23. j < n 
24. j = n 
25. Pint >.001 
26. Pint = .001 
27. Sel Mode = MS 

Operate in MS mode Forcing execution to check whether ship pair can operate in the MS 
mode 

 t46 28. i < n 
29. i = n 
30. j < n 
31. j = n 
32. Pint < 0.001 

j++ To check whether after each ship pair operation, the next pair is 
being fetched 

Mode Selection t49 01. a1 > 2 
02. a1=2 
03. a1 < 2 

Exit the subnet Loop Check 

 t52 04. a1 < 2 
05. a1 =2  
06. distance1 < distance2 

new1 = distance1 Computing new1 for the first pair of interfering ship when distance1 
< distance 2 

 t51 07. a1 < 2 
08. a1 = 2 
09. distance1 > =    
    distance 2 

new1 = distance2  Computing new1 for the first pair of interfering ship 

 t55 10. a1 < 2 
11. a1 = 2 
12. distance1 <    
    distance 2 
13. a1 = 1 

Compute vt, vt1, vt2 with first formula  Computing the values for the first pair when distance1 < distance2 

 t55 14. a1 < 2 
15. a1 = 2 
16. distance1 >=   
    distance 2 
17. a1 = 1 

Compute vt, vt1, vt2 with second formula  Computing the values for the first pair when distance1 >= distance2 

 t56 18. a1 = 2 
19. distance1 <   
    distance 2 
20. a1 <> 1 

Compute with formula2 Computing the values for the second ship when distance1 < 
distance2 

 t56 21. a1 < 2 
22. a1 = 2 
23. distance1 >=   
    distance 2 
24. a1 <> 1 

Compute values with formula2 Computing the values for the second ship when distance1 < 
distance2 

Access Database Not implemented because actual design used vectors   
Minimum Value t75 01. pla < pms 

02. pla < png 
app=Pla When Pla is lowest 

 t76 03. pla > pms 
04. pla = pms 
05. pms < png 

app=pms When Pms is lowest or equal to Pla mode and Png is greater than 
both these values 

 t77 06. pla < pms 
07. pla > png 
08. pla = png 

condition pms<png being checked When Pla greater than Png but less than or equal to Pms  

 t79 09. pla > pms 
10. pla = pms 
11. pms > png 
12. pms = png 

app=png When Png is lowest or equal to Pms and Pla greater than both these 
values 
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