
Software Design and Testing Using Petri Nets: A Case Study Using a
Distributed Simulation Software System *

S. Ramaswamy**, R. Neelakantan
Software Automation and Intelligence Laboratory, Department of Computer Science

Tennessee Technological University, Cookeville, TN 38505
Phone: (931)-372-3691. Email: srini@acm.org / srini@ieee.org

ABSTRACT: - This paper presents the application of
Petri Nets in software design and testing using a distributed
simulation application for naval radar interference
resolution as a case study. Good software systems design
promotes the “minimal” exertion of control over the
different subsystem components; nevertheless, the
knowledge of “critical” states of operation within one
subsystem can orient other subsystems to react
intelligently. Hence, a methodology for determining all the
important “logical areas” of a subsystem is most crucial.
The approach used here is based on a technique called
Minimal Transition Cover Sets, or MTCS, which is a
refinement of the minimal transition invariants of the
corresponding Petri Net model of the system [1]. It allows
for selective information sharing; one of the most
important attributes of good object-oriented design. This
paper explores this approach to aid the system designer
build some high level knowledge about the different
subsystem components. Using this high-level knowledge,
the designer can then choose an appropriate design from a
group of designs and thus can be in a position to
qualitatively compare and contrast two or more design in
terms of information sharing capabilities [2]. A further
enhancement of this MTCS approach involves its use in
building software test cases. It allows for the development
of the necessary test cases in the verification of software
system modules.

I. INTRODUCTION
Software systems designed to be distributed,

interactive and intelligent (in a domain-specific sense),
with ubiquitous human interfaces and the ability to exhibit
intelligent cooperative behaviors will pave the way for
achieving agile and flexible automation. With the advent of
complex systems in modern day industry that operate in
dynamically changing environments, software
development for such systems calls for addressing the
issues of increasing complexities in managing processes
and communication between processes. It is becoming all
the more imperative that the software systems be robust
and error free in such real-world applications. Thus,

* The research is supported, in part, by the Center for Manufacturing

Research at Tennessee Technological University.
** Please address all correspondences to Dr. S. Ramaswamy.

demonstrating intelligent decision making capabilities
while working with other subsystem entities is critical.
This research is part of an effort towards the development
of such flexible software systems. Thus, developing
methods, tools and methodologies that aid in the design of
software systems using such scalable, basic underlying
structures is the principle objective of this research.

Such software modules (or objects, procedures, sub-
systems as referred to in different programming and
development paradigms) that make up a flexible software
system are termed Intelligent Coordinating Entities, or
ICE. The ICE concept is based on the observation that if
software modules can be designed with a simple, well-
defined underlying symmetrical coordination framework,
(similar to the formation of snow crystals that come in
infinitely different shapes and combine in various ways to
form snowflakes) then they can be combined in various
ways to implement different kinds of software applications
in a multitude of application domains.

This paper1 is organized as follows: Section II
provides an overview of the Intelligent Coordinating
Entities (ICE) concept, the use of Petri Nets for
implementing ICE elements and their applicability to
designing better software systems. Section III provides a
brief introduction to the example distributed simulation
system, the overall Petri Nets model of the system and its
various subnets. Section IV provides the design analysis as
well as test case design for “necessary” software
verification. Section V concludes the paper.

II. INTELLIGENT COORDINATING ENTITIES
The ICE design concept goes a step further than

current agent based, and other related, paradigms to
designing intelligent systems. ICE-based design seeks to
extend current agent-oriented design approaches to
implicitly include a structured coordination framework,
which can be implemented through different enabling
technologies (such as DCOM/CORBA/JINI) - necessary to
bring such intelligent coordinated behaviors among
constituent modules (ICE elements, or ICICLES) in
modern-day systems to fruition. In a system, an ICICLE,
therefore, should not only consist of a representation,

1 Due to restrictions in length, throughout this paper, it is assumed that

the reader is familiar with at least the basic concepts of Petri Nets.
The references at the end provide abundant additional introductory
material to Petri Nets [3, 4].

decision and reaction structure, but also include the
mechanisms to orchestrate such reactions in a coordinated
fashion using a well-defined communication structure as
the underlying basis. Thus, a communication-centric
structure forms the core of every ICE element (similar to
the hexagonal structure in the snow crystal analogy).
Depending on the enabling technology used, it may or may
not be necessary to include the code for the communication
structure within each ICICLE. However, depending upon
the other players in the coordination, an ICICLE can
selectively choose the appropriate information it is willing
to share with the group by means of a dynamic
"information-sharing" model. There are two fundamental
issues to designing such ICE elements - its communication
and coordination structure.

The basis for
every ICE element is
a well-defined,
flexible
communication
structure. Therefore,
a software system
designed with ICE
elements, or
ICICLES, assumes a
networked structure
of dynamically
interacting ICICLES.
The interaction
capability of an

E may be
either time-invariant
or time-dependent.

Hence, it may be different at different time instances
depending upon the composition and needs of the system
(may be based on system goals and/or objectives) and the
other elements involved in the interaction. Each ICICLE
may or may not have a corresponding hardware resource
associated with it - the implicit assumption being that all
hardware devices have an inherent ability to communicate
with other active elements within the group. This
communication capability may be platform and language-
independent and hence can be brought forth by using any
standard specifications such as DCOM, CORBA, JINI,
etc., that provide immense distributed coordination
capabilities.

ICICL

Available printer
queue length

Incoming job request

Process job (one
active, rest queued)

Accept print job
Deny Print job

NACK / ACK
Completion

Petri Net Place

Petri Net Transition

Control token

Flow token

Figure 1. Petri Net Model of a
Simple Print Process
Functionality

The communication framework, while providing the
flexibility of interaction, does not by itself make an
ICICLE intelligent. Thus, on top of the above mentioned
communication framework, a well-defined coordination
capability has to be built. This is to be implemented by
maintaining a dynamic "information-sharing" model
accessible by each ICE element. This model is to be built
and/or updated periodically and possibly maintained
consistently across a network. Any ICICLE will use this

information to verify the availability of a service or other
such information. Servers may provide the necessary
capabilities for model maintenance, while clients may not
have this capability. The model may be dynamically
generated / updated at the server by exploding / imploding
details on specific and available services depending on the
interaction request from the client. With the server having
the ability to either provide, or refer to a provider of, such a
service, the client will be able to assimilate information
about the server and hence act either pro-actively or
reactively. This ability to interact and coordinate allows the
embedding of domain-specific intelligence within client
applications.

For example, assume that this technique is been used
to build an automated factory floor. For simplicity, assume
that each factory floor resource, would therefore, in
essence be designed as an ICICLE. Further assume that a
resource, say R1, at the beginning of a job flow is stuck on
some job. With its communication-centric structure, R1 is
able to communicate this information to other members of
the group, if it chooses to do so. Correspondingly, other
members of the group can reevaluate their goals / strategies
on spending their resources more productively by reacting
intelligently to this information. However, in designing
such a system, the first order of priority is to devise a
mechanism to discern the information to be shared! To
accomplish this, as part of the development process, we
propose to use a Petri-net based analysis technique to
analyze each ICICLE modeled by a Petri Net model and
correspondingly extract the “information” to be shared
using PN invariants.

An ICE element must be able to readily perceive,
appreciate, understand and demonstrate cognizant
behavior. For this reason, a design method must first
capture the important attributes of the functionality of the
ICE element in its representation. In this regard,
identification and handling of failures is of critical
importance. A software modeling mechanism must
therefore be flexible and sufficiently rich, to allow a
designer represent and understand local failure behavior in
detail. In our work, we use Hierarchical Time-Extended
Petri Nets, or H-EPNs, [3] a hierarchical Petri-net
modeling mechanism with the capability for selective
expansion / contraction of subnets to model selective
information sharing [1]. The base model for each ICICLE
is derived by a bottom-up synthesis of smaller Petri net
models, each of which pertains to an atomic (i.e., a well-
defined functionality such as the request and processing of
a connection, a robot move operation, etc.) functionality of
the ICICLE. Composing these models into one higher-level
ICICLE model is accomplished by traditional Petri-net
synthesis techniques. Models can be synthesized many
times over to create a nesting of sub-models, called
subnets. Depending upon the level of information-sharing
detail these subnets can in real-time be either collapsed in

to one subnet place or
expanded by the ICICLE
to derive the appropriate
information to be
shared. In detail, this
occurs as follows: When
a request for a service
reaches a server from a
client, the server first
classifies the client to
determine the level of
information sharing
required. Depending on
this classification, the
server may choose to
collapse / expand some or all of the model details
contained in its subnet models to create a dynamic model.
Using this dynamic model, the appropriate information to
be shared is determined and communicated to the client.
Often, in addition to requesting the server to perform pre-
stated services, the client may require information about
the server to "act" intelligently. For example, a print
handling functionality on a machine on such a network
may want to know if a particular printer is active
and, if active, the length of its queue. With this
information, the machine may decide to either
submit its job to this printer or reroute it to another
"less-taxed" printer. The printer ICICLE, therefore
needs to have the ability to determine if it is busy
and also the no of jobs it has on its queue (the
number of tokens at the process job place in Figure
1 using a dynamic model. It also communicates this
information to the machine that is authorized to print
to it. A simple Petri net model for such printer
functionality is illustrated in Figure 1. It is to be
noted that the "process job" place in Figure 1 can be
further refined as a subnet to represent greater
details of the print process. Also, a separate counting
procedure can be integrated into the model to
determine the length of the queue.

In case of a print request from a machine that
either does not have the authority, or has very
minimal coordination privileges, to print to this
printer, the printer may send back a "no
acknowledgement" - NACK, or just relay back the
information that it is busy. The flow tokens cause
this subnet to become active in the coordination
process. If the print process model is represented in
a higher-level net as a subnet without being
expanded, the control token that represents the
available queue length and the number of tokens in
the process job place will not be "visible".
Therefore, the information on the queue length will
not be available to this machine.

III. EXAMPLE
APPLICATION

Interference detection and
resolution among mobile naval radar
units is critical to naval operations.
Previous work in this area has
involved the exploration of this
problem in a distributed simulation
environment using three
communication approaches viz.
Master-Slave (MS), Locally
autonomous (LA), and Negotiation
(NG) for coordinated interference
resolution. In such applications,

groups of ships work in close consensuses with one
another for some collective and constructive goals. Hence,
a study of their interaction and coordination mechanism is
of extreme importance at the design stage for writing
reliable and good software for such real-time systems.
Since every ship in a naval group is associated with
appropriate radar units for detecting and tracking purposes,
hence, it is important that these radar units do not have

Ship Class
Operations

Slave Watcher
Class

Operatioins

Switching
Algorithm

Detection
Algorithm

Slave Listener

Access
Database
Method

Mode Select
Algorithm

Access
Database
Method

Minimum Value
Calculation

A Diagram Showing how each class
is called in the orginal source code.

Figure 2. Overview of the Simulation Software
System for Automated Interference Resolution

 Subnet for
SlaveWatcher Class

Implements the
required algorithms

Switching
Algorithm

Slave
Listener

Detection
Algorithm

SlaveListener
Class Subnet

MasterClass
Thread

MasterThread
Subnet

Master Class
Subnet

MasterSender
Thread

MasterThread Class
(acts as the master in MS

mode)

Compute Packet
for Master

Send information
Master

Highest Level
Structure Ship Class

Operations

SlaveWatcher
Class

Operations Sleep
Process

MasterSender
Subnet

3

t1

t2

t3
t4

t5

t6

t7
t8 t9

t10 t11

t12Calls

Calls

Calls

Calls

Figure 3. PN Model of the Distributed Simulation System

frequency interference during operation. For normal and
proper operation of these radar units, it is imperative that
interference-free frequency is available for each radar unit.
Whenever interference occurs between radar units, a
suitable mechanism needs to be adopted to resolve this
interference. This detection and resolution process that is
associated with these affected radars is of extreme
importance in time-critical situations.

Since, these radar units work in a dynamically
changing environment, such as frequent change in
direction, frequent change in coordinates of the ship and
other such parameters that affect the frequency of
operation, a need for automated negotiation for
interference deduction and resolution between the affected
radar units and a choice of an appropriate coordination
framework is most desirable.

Two important steps that have major impact in this
automated negotiation for interference detection and
resolution are (i) The process of determining interference,
and, (ii) Resolution process of this interference.

These two steps play very critical role in the proper
and intelligent working of the naval radar units. Hence, due
to time-restrictions only these two steps have been studied
and modeled. The first step, basically deals with the actual
process of interference deduction. Two ships are said to

have interfering frequencies when their probability-of-
interference is greater than 0.001. This probability of
interference Pint is a quantitative approach based on sound
communication theory principles that tells us if
interference can occur between two radars based on a set of
parameters. So, the detection algorithm module determines
(by reading the database for each pair of ship in the group)
if the Pint value is greater than 0.001 and if so, switches to
a particular mode of operation that resolves this
interference. This mode of operation is a pre-computed
mode for each ship based on the communication
parameters such as position, direction etc. For more details,
readers can refer to [5]. The second step involves the
process of determining the mode of operation for each
ship. The modules, switching algorithm and mode selection
does exactly this. It reads the parameters for each pair of
ship in the group from the database, and determines the
mode of operation. This mode of operation is then written
in to the database for that particular pair of ship. Since, this
kind of an application envisaged a real-time application
development process; hence, this problem was taken as a
specific case study to develop a Petri Net model and show
that analysis of Petri Nets does produce useful and
important results for software design and testing. Begin a
real time application simulation; hence it became
imperative to build a good design (that is robust and
scalable) and to build “necessary” test cases for testing.

Subnet for
Switching
Algorithm

Select the
Mode for i,j

ship

Read
database(i)

i=1

j=1

Write into
database

"the mode"
for ship i,j

Read
database(j)

j=0,
i++

j++

Subnet for
Detection
Algorithm

Read
database(i)

j=1

Read
database(j)

j=1,
i++

Read
database for

required
approach

j++

is j <=n-1

is i <=n-1

Write into
database the

new frequency
for ship i,j

i=1

YES

YES

NO

NO

Calculate
Pint

Is Pint >= .001

YES

NO

i,j represents a
counter for the no of
ships in the database

Select the required
mode of operation

Is j <= n

YES

NO

EXIT

Is i <= n
NO

YES

EXIT

LA

MS

NG

t13

t14

t16

t15

t17

t18 t19

t20

t21

t22

t23

t24

t25

t26

t27

t28

t31

t30

t31

t32

t33

t34

t36

t35

t37

t38
t39

t40

t41

t42

t43

t44

t45

t46

Figure 4: Switching and
Detection Structure

Figure 4. PN Subnet Models for Interference
Detection and Protocol Switching

Currently we are working on two issues, namely: (i)
building a Dynamic Switching Protocol (DSP) for
switching between the three existing approaches based on

Figure 5. Mode Section and Database Access
Modules

various conditions and simulated information. (ii)
Developing advanced negotiation protocols that
incorporate the advantages provided by the different modes
in different situations. These protocols also allow several
ships to negotiate at any given instant. Given this
background, it is but appropriate to understand (i) the
design of the system with respect to information shared
between the various subsystems; and (ii) the “necessary”
testing to be performed on the simulation system before a
fieldable prototype is built. The block diagram of the
simulation software system is shown in Figure 2 and the
Petri Net model is presented in Figure 3.

The subnets for the interference detection and protocol
switching algorithm are presented in Figure 4. The first
subnet in Figure 4 is used for switching purposes. It reads
the database for every pair of ship and for each pair, a

mode is computed depending upon various ship and radar
parameters. The other subnet in Figure 4 (on the right) is
used for interference detection. In this subnet, each pair of
ship is selected from the group. Based on its parameters
such as frequency, position and other factors, the
probability of interference is computed. If this value, Pint,
is greater than a predetermined value (0.001), frequency
interference is said to take place. So, in order to resolve
this interference, a mode of resolution is selected from the
database and dynamically switched to operate the radar
units in one of the 3 possible modes namely, LA, MS and
NG. This is process is then repeated for all pairs of ships in
the group.

The first subnet in Figure 5 illustrates the actual mode
computation process between two interfering agents. For

each interfering agent, Pla, Pms and Png (P is an
evaluation Index for various
modes) are determined which are
based on sound principles from
communication. Whichever value
is less among Pla, Pms and Png
that particular mode of operation is
selected for that particular ship.

The smallest value is
determined by calling a simple
minimum value determination
subnet, which is illustrated in
Figure 6.

IV. DESIGN ANALYSIS
AND TEST CASE
DESIGN

PN invariant analysis [2] were
performed to identify the various
minimal T-invariants [4] on all the
models generated. These are
illustrated in Table 1.Transitions
with a ‘l’ followed by the
corresponding subnet name

represent loop back transition which have not been shown
in any of the Petri Net models. They have been included in
the design in order to build test cases for the individual
modules and for the invariant analysis.

When a PN is used to represent a software design
structure, the T-Invariants obtained from the PN model
gives all the independent sub-flows in the design. Based on
these sub-flows, software testing can be done on the
equivalent design. In order to generate the software test
cases, MTCS algorithm [1] is used on the T-invariants
generated. The algorithm for the MTCS transition is
already presented in [1] and hence not presented here.
Depending upon the design requirements of the software
designer, the transitions from the invariants can either be
refined to obtain the design choice transitions or testing

Table 1. Minimal Invariants for the Various Subnets

Subnet Name T-Invariants
Switching Algorithm (sa) X1: t13 t14 t15 tlsa

X2: t16 t19 t18 t17
X3: t20 t21 t22 t23 t24

Detection Algorithm (da) X1: t25 t26 tlda
X2: t27 t29 t30 t31 t28
X3: t32 t33 t34 t36 t37 t38 t41 t44 t45 t35
X4: t32 t33 t34 t36 t37 t39 t42 t44 t45 t35
X5: t32 t33 t34 t36 t37 t40 t43 t44 t45 t35
X6: t32 t33 t34 t46 t35

Mode Selection (ms) X1: t47 t49 tlms
X2: t48 t50 t52 t54 t55 t58 t59 t60 t61 t62 t63
X3: t48 t50 t51 t53 t55 t58 t59 t60 t61 t62 t63
X4: t48 t50 t51 t53 t56 t57 t59 t60 t61 t62 t63
X5: t48 t50 t52 t54 t56 t57 t59 t60 t61 t62 t63

Access Database (adb) X1: t64 t66 t70 t72 tladb
X2: t65 t67 t71 t73 tladb

Minimum Value (mv) X1: t72 t74 t79 t81 tlmv
X2: t72 t73 t76 t78 tlmv
X3: t72 t73 t77 t80 tlmv
X4: t72 t74 t75 t76 t78 tlmv

Is Pla < Pms

Yes

No
Is Pms < Png

Is Pla < Png

Yes

No

app = " Pla"

app = "Pms"Yes
No

app = "Png"

t72

t73

t74
t75

t76

t77 t78

t79
t80

t81

Figure 6. Minimum Value Detection Subnet

choice transitions. The methodology used to obtain this
refinement is discussed in detail in [1]. The decision
associated with these transitions aid us in the design and
testing of software. The transitions obtained from the
design choice strategy aid in the decision of information
hiding and encapsulation. Whereas the decision
corresponding to the transitions obtained from the testing
choice strategy can be used for building software test
cases. These transitions correspond to the inner most
conditions being checked in the actual software design.
Building test cases on these decisions ensure that all
independent sub-flows in the design have been checked or
exercised at least once. Thus, building test cases on these
MTCS transitions ensures that the equivalent software is
being tested for their necessary and sufficient conditions.
Applying the MTCS algorithm in [1], the various MTCS
transitions were obtained. These are shown in Table 2.
The following presents the design and testing analysis of
the results obtained.

A. Design Analysis
Switching Algorithm Subnet

The design choice transitions for this subnet are t15,
t16, and t20 or t15, t18, and t20. These transitions in the
original PN model correspond to different decisions being
made. In the first set, transitions t15 and t16 corresponds to
check that is made on the value of the variable ‘i’. These
transitions are fired on the event that i becomes greater
than the number of ships in the group (t15) or i is less than
or equal to the number of ships in the group. This means
that statements after this decision are executed repeatedly
for every pair of ship in the group. These statements
actually correspond to a particular mode being assigned for
every ship pair. So, in the actual design, how this mode
assignment is done need not be revealed to other
subsystems. The only information that needs to be known
is whether all the ships have been assigned a particular
mode of operation. From the other set of transitions we can
get information as at which ship pair is being currently
operated on. Even this decision might be quite crucial or
relevant to other subsystems. So, extending this idea to the

OOD, the statements that are executed after this decision
(is evaluated to be true) can be declared as private methods
and the variables ‘i’ and ‘j’ could be declared as a public
variable.
Detection Algorithm subnet:

For this subnet, the design choice transitions are t26,
t27, and t36. Again t26 and t27 transitions correspond to
the value of ‘i’ being checked. That is, inside this subnet
the value of ‘i’ is checked with the number of ships in the
group. This decision actually correspond to deciding
whether all ship pairs have been formed and if there is an
interference among any pair, a suitable mode is switched
and interference is resolved. So, this decision might be
crucial for other subsystems. How this interference is
resolved can actually be abstracted and hence in terms of
OOD, those processes that deal with this resolving
technique can be declared as private and the variables ‘i’
and ‘j’ could be declared as public. Transition t36 is again
is a further entry point decision in this subnet that can be
clubbed with other higher decisions inside this subnet.
Mode Selection subnet:

The design choice transitions are t48 and t49. The
decision that correspond to these transitions is whether the
number of interfering agents are less than or equal to two.
For each of the interfering agent, a particular mode of
operation is determined depending on a set of parameters.
So, the decision of finding out whether a mode is been
determined for each of the interfering ship might be crucial
for other subsystems. So, the variable a1 can be declared as
public and the methods and processes that follow this
decision can be declared as private.
Access Database subnet:

Here the transitions t64 and t65 correspond to the
decision of whether a write is to be made in to the database
or whether a read is to be done on a database. This decision
of whether the database is in the write state or a read state
might be useful for other subsystems. Hence, access data
base method might be declared as a public method.
Minimum Value subnet:

 Here the transitions
are t73 and t74 which
correspond to the

cision of checking
the first value with
the second value.
Only from this
decision can one go
on further to find out
the smallest value.
Since, this subnet
might be useful at
other places that
might need to

de

Table 2. Various MTCS Transitions

Subnet Name Greedy Choice
Transitions

Design Choice
Transitions

Testing Choice
Transitions

Switching Algorithm t13 t16 t20 t15 t16 t20 or
t15 t18 t20

t15 t18 t20

Detection Algorithm t25 t27 t32 t26 t27 t36 or
t26 t31 t38 t39 t40 t46

t26 t31 t38 t39 t40
t46

Mode Selection t47 t48 t48 t49 or
t52 t55 t56 t51 t49

t52 t55 t56 t51 t49

Access Database t64 t65 t64 t65 t64 t65
Minimum Value t72 t73 t74 or

t75 t76 t77 t79
t75 t76 t77 t79

compute the minimum value, hence this method can be
declared as a public method.

B. Test Case Design
The test cases derived from the MTCS transitions give

all the necessary test cases that need to be performed for
that particular module or subnet to be deemed error free.
On the performance of these tests, the designer can be
reasonably confident about the proper functioning of the
modules as “independent and self contained”. The
summary of the test cases for all the modules is shown in
Table 3. Various modules were integrated in succession to
form larger net models and individual test cases were
generated for such modules. Due to the length restrictions
of this paper, we are not presenting these results. Interested
readers may contact the author for these results.

V. CONCLUSIONS
The ICE-based design approach is (i) a clear and

simple approach to design a software system that is
distributed, interactive and has the ability to coordinate and
communicate with other software, hardware and/or human
elements. ICICLES will allow standard implementation
patterns as well as facilitate the adoption of reusable
software components that increases reliability and product
quality. It will help reduce project management costs by
keeping project teams focused on delivering improved
functionality on well-defined ICICLES.
Unique market requirements force organizations to quickly
adapt to the rapid changes. Generic solutions will not
always solve particular problems and meet the demands of
certain industries. This issue raises the need for solutions
that are scaleable, flexible, and can be tailored to the
special project needs. Since each ICICLE will contain a
mechanism for interaction with other members in the group
and a dynamic modeling mechanism to determine
"information-sharing" needs, it will provide a flexible
framework for designing evolutionary and business
software systems.

ICICLES are based on a flexible communication
structure with incrementally built coordination structures.
Reasoning and other application-specific modules may be
built based on domain-specific needs. Thus, software
systems can be built as a combination of components that
vary in their capabilities ranging from ones that are highly
intelligent to those that are worker modules. Moreover, use
of a dynamic cooperation model allows for components
that can have a time-dependent interaction behavior. In a
system with many ICICLES, the presence or absence of a
particular component would thus be of little significance as
long as the system is build with redundant structures - if a
component is present and is willing to cooperate for
providing some required service it will be utilized. This

allows the required flexibility to leverage industry and
vendor partnerships.

There are a wide variety of issues to be addressed
before the viable realization of this technique. Some of the
basic issues to be addressed by our research include the
following. (i) Should a dynamic PN model be generated
and used exclusively at run time or can it be a pseudo-
dynamic entity? (ii) Petri-net models are not immune to the
state-space explosion problem. If so, what are the
performance limitations of the dynamic generation of
"huge" Petri net models. Can a tradeoff be achieved at any
level either for the maximum number of allowable subnet
expansions or for the number of places / transitions in the
net? (iii) Most current algorithms to determine T-
invariants use a matrix based representation scheme. Such
a scheme results in the manipulation of huge "sparse"
matrices. Are there better algorithms to determine the
minimal T-invariants? (iv) Can we build a
certification/reward mechanism for ICICLE coordination?
If so, how is this to be done - by static rules or by dynamic
derivation of reward units? (v) What is a good measure of
ICICLE and system stability? How does coordination
affect stability? (vi) Can ICICLES coordinate over
geographically distant networks - possibly using the world-
wide-web as a backbone? How is performance affected in
such a case? We hope that future research into these issues
will enable the development of distributed, interactive (in a
domain-specific sense) systems with ubiquitous human
interfaces and the ability to exhibit intelligent cooperative
behaviors. When research into the above issues is
completed, it will allow the development of a repeatable,
multi-phase process (of designing ICICLES) to yield
production-caliber, deployable solutions in the shortest
possible time.

References
[1] S. Ramaswamy, “A Petri net based approach for establishing

necessary software design and testing requirements”, Special Session
on Petri Nets in Systems Design, IEEE Conference on Systems, Man
and Cybernetics, Nashville, Oct-2000.

[2] S. Ramaswamy, A. Suraj, K. S. Barber, "An Approach for
Monitoring and Control of Agent Based Systems", Proceedings of
the 1997 IEEE International Conf. on Robotics and Automation,
Albuquerque, New Mexico, April 1997.

[3] S. Ramaswamy, K. P. Valavanis, K. S. Barber, "Petri Net Extensions
for the Development of MIMO Net Models of Automated
Manufacturing Systems", Journal of Manufacturing Systems, Vol.
16, No. 3, May/June 1997, pp. 175-191.

[4] T. Murata, “Petri Nets: Properties, Analysis and Applications”,
Proceedings of the IEEE, Vol. 77, No. 4, April 1989. pp. 541-580.

[5] S. Ramaswamy , K. Srinivasan , P. K. Rajan , R. MacFadzean , S.
Krishnamurthy, "A Distributed Agent-based Simulation
Environment for Interference Detection and Resolution", Special
Issue on Software Agents and Simulation, SIMULATION, June 2001

Table 3. Recommended Test Cases for the Various Modules
Subnet name Transition involved Test Cases Statement being executed Importance of this test

Switching Algorithm t15 01. i > n
02. i = n
03. i < n

Exit the subnet Loop Check

 t18 04. i < n
05. i = n
06. j < n

j=1 and i++ Whether Incrementing of i takes place at the correct values of i and j
to account for all ship pairs

 t20 07. i < n
08. i = n
09. j = n
10. j < n
11. j = n

Actual mode selection operation Whether a mode is determine for all ships in the group

Detection Algorithm

t26 01. i > n
02. i = n
03. i < n

Exit the subnet Loop Check

 t31 04. i < n
05. i = n
06. j > n

j=1 and j++ Whether Incrementing of i takes place at the correct values of i and j
to account for all ship pairs

 t38 07. i < n
08. i = n
09. j < n
10. j = n
11. Pint >.001
12. Pint = .001
13. Sel Mode = LA

Operate in LA mode Forcing execution to check whether ship pair can operate in the LA
mode

 t39 14. i < n
15. i = n
16. j < n
17. j = n
18. Pint >.001
19. Pint = .001
20. Sel Mode = NG

Operate in NG mode Forcing execution to check whether ship pair can operate in the NG
mode

 t40 21. i < n
22. i = n
23. j < n
24. j = n
25. Pint >.001
26. Pint = .001
27. Sel Mode = MS

Operate in MS mode Forcing execution to check whether ship pair can operate in the MS
mode

 t46 28. i < n
29. i = n
30. j < n
31. j = n
32. Pint < 0.001

j++ To check whether after each ship pair operation, the next pair is
being fetched

Mode Selection t49 01. a1 > 2
02. a1=2
03. a1 < 2

Exit the subnet Loop Check

 t52 04. a1 < 2
05. a1 =2
06. distance1 < distance2

new1 = distance1 Computing new1 for the first pair of interfering ship when distance1
< distance 2

 t51 07. a1 < 2
08. a1 = 2
09. distance1 > =
 distance 2

new1 = distance2 Computing new1 for the first pair of interfering ship

 t55 10. a1 < 2
11. a1 = 2
12. distance1 <
 distance 2
13. a1 = 1

Compute vt, vt1, vt2 with first formula Computing the values for the first pair when distance1 < distance2

 t55 14. a1 < 2
15. a1 = 2
16. distance1 >=
 distance 2
17. a1 = 1

Compute vt, vt1, vt2 with second formula Computing the values for the first pair when distance1 >= distance2

 t56 18. a1 = 2
19. distance1 <
 distance 2
20. a1 <> 1

Compute with formula2 Computing the values for the second ship when distance1 <
distance2

 t56 21. a1 < 2
22. a1 = 2
23. distance1 >=
 distance 2
24. a1 <> 1

Compute values with formula2 Computing the values for the second ship when distance1 <
distance2

Access Database Not implemented because actual design used vectors
Minimum Value t75 01. pla < pms

02. pla < png
app=Pla When Pla is lowest

 t76 03. pla > pms
04. pla = pms
05. pms < png

app=pms When Pms is lowest or equal to Pla mode and Png is greater than
both these values

 t77 06. pla < pms
07. pla > png
08. pla = png

condition pms<png being checked When Pla greater than Png but less than or equal to Pms

 t79 09. pla > pms
10. pla = pms
11. pms > png
12. pms = png

app=png When Png is lowest or equal to Pms and Pla greater than both these
values

	Introduction
	Intelligent Coordinating Entities
	Example Application
	Design Analysis and Test Case Design
	Design Analysis
	Switching Algorithm Subnet
	Detection Algorithm subnet:
	Mode Selection subnet:
	Access Database subnet:
	Minimum Value subnet:

	Test Case Design

	Conclusions

