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Using the Metaphor of Intelligence

A. Wild
Motorola, Phoenix, AZ 85018

ABSTRACT

Constructed system with autonomy can be considered as possessing
intelligence, if intelligence is understood as a metaphor. It is useful to
be aware of that, when defining desirable features for constructed
systems, in areas such as reflecting the world (ontology), definition
and pursuit of goals (teleology), or general human-like behavior
(anthropomorphism). Modeling and simulating integrated systems
exemplify the usage of multi-scale, multi-disciplinary representations,
as abasis for increasing the autonomy of some specific constructed
systems. Measuring the intelligence of constructed systems requires a
Vector of Metricsfor Intelligence. Its components will be defined by
different means, such as conducting existence tests for essential
capabilities, measuring the power to eliminate unnecessary
exploration, competitions of hardware-compatible systems, or vote
by ajury.
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1. INTRODUCTION

The intelligence of the constructed systems with autonomy
hasto be understood as a useful metaphor, not to be stretched
too far [1]. Asbeneficiaries of such systems, we are actually
interested in their performance. The underlying assumption,
however, isthat building intelligence into the system, whatever
its definition would be, would result in a generic and
systematic way to improve their performance.

Whileitisrelatively easy to imagine ways to measure
performance, it isfar less obvious how to measure intelligence,
aswe lack acrisp, generally accepted definition, be that for
human beings, for other beings, or for artifacts.

The casual observer perceive manifestations of
intelligence in multiple forms, and aso will notice that
somebody performing very intelligently in one situation may
show what appearsto be alack of intelligence in another
situation. This may suggest that intelligenceisalocal skill. On
the other hand, some researchersintuitively feel that
intelligenceisan intrinsic capability of an entity, and engagein
exploring the commonalties between different entities
considered intelligent.

Pragmatically, the latter seems the most promising
approach. If successful, it would provide the foundation for a
methodology to construct systems with continuously

improved capabilities. To drive the progress, it is essential to
establish metrics, ranking systems according to their
intelligence. Note that for this purposeit is actually irrelevant
whether one considersintelligence as ageneric or alocal
property. Depending on the viewpoint, the ranking would be
valid either within a specified sub-space or in general.
However, general methods, if possible, would have clearly a
wider impact.

2.LIMITSOF THE METAPHOR

A multitude of aspects can be considered as elements or
capabilities necessary to support intelligent behavior. In some
versions, the Vector of Intelligence has 25 dimensions. Itis
supported by a set of computational tools, with a system
architecture counting 16 features, and is completed by a
control and data acquisition system with supervisory
authority, also featuring anumber of capabilities. Many of
these elements do justice to the view adopted by the Italian
Renaissance and illustrated famously by Leonardo da Vinci:
the man isthe measure of al things. While this approach is
quite effective, and may be often unavoidable, cautionisin
order to avoid excessesin at least three respects: our view of
the world, our goal setting capabilities and our own being.

2.1 Ontology

The dimensions of the vector of intelligence and the
supporting tools, architectural features and auxiliary
subsystem should not be excessively isomorphic with our
contemporary perception of the world.

A few centuries ago, we might have asked an intelligent
system to recognize the four elements and their interactions,
we would have argued about the phlogiston, and hoped that
eventually an intelligent system will extract the quintessence of
anything and everything. It should have recognized the
planets and the major stars, and have had the ability to
synchronize actions with favorable skies. The Euclidean
geometry was avery pertinent model to simplify the
description of the world, by accepting that conceptslikea
straight line do have akind of existence. Likewise, all needed
knowledge about gravity was that there exists an attraction
force between two bodies, precisely equal to the Cavendish
constant multiplied by the two masses divided by the square
of the distance. Thisformulaeasily generated the laws derived



by Kepler from mountains of data and hundreds of years of
observations. The depth of our understanding was made
sensible (was measured ?) by thistremendous simplification.

Unfortunately, the space-time curvature of generalized
relativity eliminated the paradigm of the straight line, and
Newton’s simple formulawas unable to lead to a solution for
three body interactions. Our present view is that the world
does not admit a simple description.

When facing complexity, we tend to rely upon hierarchy
to simplify interactions. | deas about multi-resolution, multi-
scaleviewsimply ahierarchy. We tend to require that an
intelligent system can do the same, being able to handle
several hierarchy levels. Their number and their adequate
utilization are candidates for intelligence metrics.
Computational tools of intelligence define rules and
procedures for crossing boundaries between hierarchy levels.

However common and widely accepted, the hierarchical
representation of complexity is probably no more than the
current model, and it seems reasonable to expect that it will be
eventually replaced by adifferent view. Thiswould also induce
an evolution of the intelligence metrics derived from a model of
theworld, asit evolves historically.

Asamatter of fact, the next paradigm may aready take
shape under our eyes: can one speak about the Internet as
about a constructed system with autonomy, exhibiting
intelligence ? And if yes, how would that intelligence be
measured ?

2.2 Teleology

We consider the ability to generate goals as aleadership
feature. Some philosophers consider this as the defining
feature of any living beings.

However, humans, and other living creatures, pursue
both explicit and implicit goals. They either conceptualized
themselves the explicit goals, or receive the goals form higher
authorities. In anyone of these situations, they may or may not
exhibit intelligent behavior. A simple positive example isyoung
James Watt, being given the goal to keep the pressure of a
steam vessel constant. He did not conceive the goal himself,
actually, he was pursuing rather different interests. It wasnot a
goal with any recognizable intellectual challenges. But Watt
generated aresponse that resonates until today, and will keep
resonating, being, among other things, largely responsible for
this workshop.

2.3 Anthropomor phism

A system scoring high on all dimensions of the Vector of
Intelligence and its auxiliaries will probably pass easily the
Turing test. It may do even more, it would be basically human,
at least to the extent of our current understanding of the way
humans are looking like. Some of the propertieslisted by

Neville address the ability to communicate like humans,
including such things as understanding a sentence and
developing knowledge. These ideas seem to relay on the
perception that the more a system is similar to a human being,
the more would it be perceived asintelligent.

Evenif our current understanding of humans would be
definitive, thisis approach may be an anthropomorphic trap.
Actually, thereis no necessity for the constructed structures
with autonomy to present any isomorphism with our ideas
about the human beings. Many of the most effective artifacts
created by humankind are radically non-anthropomorphic, or
non-biomorphic, for that matter. Starting with the wheel,
radically different from aleg, yet allowing better locomotion,
one can easily follow with any number of examples. A jet
airplaneisnot abird. A computer isnot abrain. And a
constructed automaton with autonomy is not aliving being.
Thereis no recognizable necessity for these artifactsto be
indistinguishable from, or even similar to their closest living
relatives.

If one recalls the number of wordsin any language
describing non-intelligent behavior, one may conclude that
copying too closely humans may be less than desirable.

3. PROGRESSING TOWARDS THE
METAPHOR

Building systems reflecting our view of the world, our
purposes and our way of being, may prove productive. Multi-
scale representations are probably a useful way to handle the
complexity of the world in our minds, at this point in the
evolution of our understanding. We can legitimately expect
such representations to be useful in sciences and engineering.

The ultimate multi-discipline, multi-scale simulations are
attempted by cosmologists, who hope to deduce the
characteristics of the universe, 10 to 15 billion years after the
Big Bang, from its characteristics when it was younger than
one second.

Electronic engineers aiming to design integrated
microsystems, have simpler needs: to simulate, with some
quantitative accuracy, what happens on a silicon wafer within
atime span from afew nanosecondsto afew hours.
Microsystems are defined here as monolithic structures
functionally equivalent to multi-chip systems. Increasing
integration levels drive the semiconductor industry towards
building system on a chip. To address this demand, design and
manufacturing must integrate heterogeneous elements with
traditional data processing circuits, encompassing multiple
disciplines, multiple scalesin space and multiple scalesin time,
within a coherent framework of computer aided design.
Adequate modeling and simulation enables closed loop
optimization and microsystem design automation.

Microsystem design must handle multi-scale modeling in
time, to cope with the wide gap present in the temporal scales.



While atomistic calculations are useful for continuum
simulations, molecular dynamic simulations are limited to times
on the order of nanoseconds. The gap can be bridged by a
meso-scal e calculation, for instance using the L attice Monte-
Carlo (LM C) method to describe the hops between stable
states (nanoseconds) rather than the vibration frequencies of
the lattice (fractions of picoseconds). In space, multi-
discipline, multi scale modeling is often required to link
Macroscopic reactors to microsopic integrated elements. Asan
example, amicromachined gear, 1 micrometer in diameter, can
be analyzed using three hierarchical levels: continuum models
(finite element) for the body of the wheel, molecular dynamics
for gear teeth, and tight-binding for the contact between teeth.
The connection is realized via a self-consistent overlap region,
while keeping the time discretization in both connected
domainsin lock step, the whole system requiring massive
parallelization at Maui Supercomputer Center.
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Currently, the multiple disciplinesinvolved in
microsystems are either unconnected, building an archipelago,
or put together by human programmersin an ad-hoc manner.
Activeresearch, however, isaimed at systems able to build
bridges between the isolated domains, as a pre-requisite for
using optimizersin closed loop. Thistechnique allowsthe
correlation between decisions at one manufacturing step and
the system level features and performance.

Using an optimizer at the meta-level to manage the design
process brings the system one step further. Many features
would be required to incorporate these or similar functionsin a
constructed system with autonomy, exhibiting some
intelligence.

This“bottom up” progression towards a devel opment
system with autonomy increasingly adds features included
among the dimensions of the Vector of Intelligence. This
seems a promising way towards the next challengesin
engineering, believed to be nanosciences, biological systems,
and last but not least, robotics. Searching for their intelligent
featureswould surely provide underlying commonalties and
accelerate the progress.
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4. MEASURING THE METAPHOR

Asthe Vector of Intelligence and its supporting structures are
multi-dimensional, multi-faceted and quite heterogeneous, a set
of metrics would probably be necessary, in the hope that if a
unitary definition of intelligence would emerge, a composed
metric may by put forward. The four approaches presented
below are the beginning of the Vector of Metrics for
Intelligence.

4.1 Counting features

Some features of the Vector of Intelligence and the supporting
structures can be tested by a go/no go test, they either exist
within agiven system, or they do not. Furthermore, some of
them have clear numerical definitions and can be determined
by counting. Theresult of counting isfinal, aslong asthe
structure does not evolve, or represent just an assessment at
that point in time, if the system can evolve. The only open
problem is how to of aggregate the different dimensions of the
Vector of Intelligence, so that ranking can be done.

4.2 How far away from enumeration ?

Testing for functional correctness of a system poses serious
challenges even at the lowest levels. For example, testing the
hardware of a microprocessor, afinite state machine, is
conceptually easy, yet unsolvable practically. Theoretically, a
test can run through all possible transitions between states,
with all bit configurations at the external inputs, comparing at
each step the outputs with the specification. The number of
states and transitionsisfinite, yet so large, that the test of a 32
bit processor running at 1GHz would take atime longer that the
age of the Universe.

To reduce the number of tests, one can use additional
switching elements to reconfigure the structure to afinite state
machine of lower complexity. If thelogic gates and storage
elementsin the finite state machine have been defined
algorithmically, one can safely accept that the functionality
would be correct, if no physical defects are present. In this



case, the simplified structure may be used to proof that all the
desired logic gates and storage elements (afew 10 or 100
million of them on contemporary chips) are present, functional,
and properly connected. These methods, currently used, are
still unable to provide satisfactory test coverage. At amore
abstract level, formal analysis of the structures is researched as
the next opportunity to achieveit. If one adds to the testing
the requirement to proof that a system or a piece of softwareis
providing optimum responsesin all cases, the complexity of
the task isinhibiting.

In general, ameasure of intelligence could be how much
of the space to be investigated is not explored through
enumeration.

Thisisamost isomorphic with some areas of scientific
knowledge. For instance, the postul ates of thermodynamics, to
be accepted rather than demonstrated, point out what is
impossibleto achieve, saving us huge efforts, like trying to
build all possible cases of perpetuum mobile of the first and
second species, in addition to trying to reach absolute zero.
Obviously, the postulates are very effectivein eliminating an
infinity of pointless attempts.

4.3 Contests

Intelligent systems are expected to perform well in uncertain
situations, and direct competition among systems might be an
appropriate way to generate uncertainty, providing means to
rank them.

Examples of competitions are robot wars, fire-fighting
robot contests, or robot-soccer tournaments. It is necessary to
define the contests such that they address either the body or
the mind of the systemsin competition. Robot wars address
obviously both. Athletic capabilities, rather than intelligence,
al so determined the outcome of the last World Cup for Robot
Soccer, at which one team had access to more powerful motors
than the other teams.

To dissociate the two components, an easy way would
be to organize games between robots mechanically identical,
but driven by different minds, aluxury seldom available with
human beings.

4.4 Vote

Capturing all elements necessary for intelligent behavior isa
complex and controversial endeavor. The Vector of Intelligence
and supporting features, even after unnecessary
anthropomorphic features have been eliminated, still has
dimensions judged by perception.

Contemplating the behavior of living beings, one would
readily identify some that would be spontaneously perceived
as non-intelligent (stupid), while awhole range would be rather
neutral, neither intelligent nor stupid. An alternative approach
to building intelligent systems, could be to address the topic of

building non-stupid systems, specifying what they should
NOT do.

For instance, they should not persist in error. A non-
stupid system would recognize a hopel ess situation, and
changeits behavior or method. This distinguishesintelligence
from blind instinct: ants keep building their houses even after
the eggs have been removed. Although methods have been
defined and implemented for quite some timeto avoid stalling,
quite sophisticated autonomous systems on aremote Planet
still got stuck, as do soccer playing robots. When a player
manages to gets unstuck by spinning, the human observers
cheer. However, the opposite result is achieved, when players
start spinning without a recognizable reason.

Given the subjective component in characterizing
behavior as being intelligent, one could also envision scoring
by the vote of ahuman jury. Thiswould be similar to the
methods used in some sports such as skating, in which ajury
givestwo notes: one for the technical merit, onefor the artistic
impression. After all, contests and games are entertainment,
and audiences are entitled to have some fun.
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ABSTRACT

A critical need for a high performance autonomous system is the
ability to generate appropriate responses when faced with
conditions that were not explicitly considered during off-line
design. This paper emphasizes three technical concepts as
essential for meeting thisneed: multimodels, anytime algorithms,
and dynamic resource alocation. An example from ongoing
research in the autonomous uninhabited aerial vehicle domainis
used to illustrate the concepts. Some competing concepts are
discussed, and connections with consciousness and metrics are
outlined.

K eywor ds: Autonomous systems, multimodels, anytime
algorithms, resource allocation, uninhabited air vehicles,
CONSCi OUSNESS.

1. INTRODUCTION

Society, industry, and government are all exhibiting
increasing interest in autonomous and semi-autonomous
systems—complex engineered artifacts that require minimal
or no human involvement for their operation. The
motivations for thisinterest range from cost-efficiency to
environmental safety to national defense. Potential
applications are everywhere, especially where human
operation isinfeasible or dangerous: warfare, deep space
missions, terrorism countermeasures, and toxic material
handling are examples that come readily to mind.

From one perspective, it could be argued that the history of
automation isthe history of progressin engineering
autonomy. We have been successful in automating ever-
higher levels of operation, from regulatory control to
supervisory control on upward. The Wright Flyer required
the human pilot to perform the inner-loop control function.
Today’s commercial aircraft can fly from point A to point
B, automatically closing the loop on not just the inner loop
but also outer loop, handling qualities, and waypoint
following functions.

But autonomy is much more than automation. Today’s
engineered systems may be highly automated, but they are
brittle and capable of “hands-off” operation only under
more-or-less nominal conditions. Aslong asthe system
only encounters situations that were explicitly considered
during the design of its operational logic, the human
element is dispensable. Assoon as any abnormal situation
arises, control reverts to the human.

An autonomous agent must be capable of responding
appropriately to unforeseen situations—that is, situations
unforeseen by its designers. Some degree of
circumscription of a system’s operating space will always
exist, since survival under every environmental extremeis
inconceivable, but “precompiled” behaviors and strategies
are not sufficient for effective autonomy.

Below, | first discuss some features and characteristics that |
believe are necessary for engineering high-performing
autonomous systems. Next, in Section 3, an example from
work in progress—which is focusing on the development of
autonomous capabilities for uninhabited aerial vehicles—is
presented. Section 4 discusses some alternative
perspectives on engineering autonomy, followed by a
selective review of the consciousness controversy. |
conclude with a measurement-related note.

Parts of this paper are adapted from (Samad and Weyrauch,
2000) wherein some further elaboration can be found.

2. ASPECTSOF AUTONOMY

What does it mean to be able to react appropriately to
unforeseen situations? To be capable of exhibiting
behaviorsthat are not precompiled? | would like to
emphasize three technical concepts: multimodels, anytime
algorithms, and dynamic resource allocation. These are
discussed below, and a brief digression on the topic of
hierarchy isalso included.

2.1 Multimodels: Explicit representations of

heter ogeneous knowledge
In the absence of a sufficiently rich built-in library of
canned responses to specific situations, an agent must be
able to rely on an explicit, algorithmically manipulable
knowledge base. Instead of reflexive responses being built
in, the knowledge base required to generate responses
deliberatively must be incorporated.

The knowledge base must capture relevant details about the
capabilities of the autonomous agent, its environment, other
agentsit expects to be interacting with, its tasks or
objectives, etc. These“models’ need not be perfect; they
represent what the agent believes, not objective truths. But,
almost regardless of their fidelity, they allow the agent to
reason and to determine responses to a potentially hostile
world. The effectiveness of the responses will be afunction
of the fidelity of the models (in part), but, I would maintain,



autonomy and effectiveness are separable. Stupid
intelligence is an oxymoron; stupid autonomy isnot. (In
most of this paper, however, | do not make a careful
distinction between intelligence and autonomy.)

| usetheterm multimodelsto refer to multiple,
heterogeneous knowledge representations. We later discuss
adomain-specific example, but here | would like to note
one property of multimodelsthat islikely to be useful
across domains. The degree of precision and accuracy of
knowledge that an autonomous agent must consider will
vary with the situation it findsitself in. In some cases,
disparate models may be used to capture different levels of
detail. However, agreatly preferable option isaunified
modeling framework that is capable of providing estimates
or predictions at multiple levels of resolution, the level in
effect at any time being specifiable by ahigher level
function.

2.2 Dynamic resource allocation and anytime
algorithms
An autonomous agent must be able to dynamically manage
its processing and other (sensing, actuation, communication,
power) resources. In the face of multiple competing
demands and objectives, each of which requires individual
agorithmic attention, an agent cannot generally afford to
examine any exhaustively. Theworld does not wait for
closure of contemplation.

Thus, tradeoffs must be made in real-time, to decide how
inevitably inadeguate resources must be apportioned to the
multiple demands on them. Thisisan issuethat generally
getslittle attention from the intelligent systems community,
yetitisnolesscritical than the issue of designing
algorithms for information processing for autonomous
systems.

Different processing tasks have different criticalities,
deadlines, and other properties. Some tasks may need to be
executed on afixed periodic basis, others may be event-
driven, others yet may be continually ongoing. Thisvariety
is suggestive of the complexity of real-time resource
management for autonomous systems.

Of particular interest for autonomous operation are
“anytime” algorithms—algorithmsthat are able to flexibly
exploit available computational resources. Beyond acertain
minimum execution time that it may require to generate an
initial candidate solution, an anytime algorithm can
iteratively improve on this solution over time. Randomized
algorithms such as evolutionary computing are prototypical
examples.

Resource management in current control systems presents
an illuminating contrast with the needs for autonomous
operation noted above. All control systemstoday have to
address resource constraints. Thisisdone by determining
ahead of time—during the design process—precisely which

tasks will need to be executed under what conditions. Task
execution schedul es can then be precomputed and defined.
This static scheduling approach is infeasible for autonomous
systems.

2.3 Hierarchies, but not strict ones

The sophisticated information processing systemswe
currently engineer are almost always hierarchical. Further,
the design methodology that is proposed in today’ stechno-
culture emphasizes strict, hierarchically structured
processes. Hierarchy as an engineering design heuristic has
much to recommend it, but | would assert that it is a mistake
to assume that all intelligent systems must be analyzable as
strictly hierarchical. One need only look at the central
nervous system of any organism one thinks of asintelligent
(e.g., the human brain) as evidence. Thereiscertainly
structure to the brain, but aformal, strict hierarchy isa
counterfactual insistence. Bypass connections, reflex
reactions, affective conditioning, many intriguing

pathol ogies—these are all indicative of an organization that
is better thought of asaweb than atree, or at least as only
loosely hierarchical.

Asan example, see Figure 1. Elements of the figure
resemble the typical multilayer hierarchical architectures
that attempts at engineering autonomous systems often
adopt (i.e., the organization as shown of the spinal column,
the brainstem, the thalamus, and the cerebrum). However,
additional pathways are also present, forming prominent
and crucial bypass structures and feedback loops.
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and modifying muscle response
errors (coordination of response)
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Figurel. Smplified architecture for primate central
nervous system (figure courtesy of Blaise Morton).

3. EXAMPLE: ROUTE OPTIMIZATION FOR AN
UNINHABITED AUTONOMOUSVEHICLE

We briefly discuss here some ongoing research at

Honeywell Technology Center, targeted toward the

development of algorithms and software mechanisms for

uninhabited air vehicles (UAV s), with specific emphasis on

demanding military applications. Multimodels, anytime



agorithms, and dynamic resource allocation feature
prominently in our research.

An example of a multimodel knowledge base for route and
trajectory optimization in aUAV isshown inFigure2. The
figure shows a (wavel et-based) multiresolution
time/frequency model of atrajectory. By selectively setting
specific parameters—each associated with one of the boxes
in the top graphic—to zero, the space of trajectories can
automatically be constrained so that different segments of
the trajectory are defined in more or less detail as
appropriate for agiven situation. Trajectory optimizationis
then conducted over the enabled parameters, ensuring that
computational resources are used efficiently. Under normal
conditions, we can expect that the resolution profile would
gradually decrease over the optimization horizon. The
figure also shows multiresolution models of aircraft
dynamics and terrain; these and other models are necessary
to check various constraints on a hypothesized trajectory
and to calculate the cost function for optimization. (See
Godbole, Samad, and Gopal [2000] for more details.)
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Figure2. Multimodels for trajectory optimization for an
autonomous aircr aft.

This multimodel approach has been integrated with an
anytime algorithm for route optimization, and a simulation
result is shown inFigure 3. A UAV isskirting athreat area
when atarget model (including the target’s coordinates) is
communicated toit. The original route (not shown in the
figure) was not overflying the target area but instead
adopting alow elevation radar-evading route over aravine.
Oncethetarget is detected, the online trajectory
optimization algorithm is executed. In this case, greater
resolution is desired over amedium horizon interval, and
minimizing the previous cost function for low flight is
considered lessimportant than rapidly generating an
alternative route that overfliesthe target area. Asthe UAV
continues its flight, incremental re-optimizations are
performed at regular intervals, with the computational
resources expended on these optimizations varying

continuously depending on the particul ar objectives and
models under consideration at that time.

We currently use an evolutionary computing al gorithm—an
extension of the algorithm outlined in (Samad and Su,
1996)—for optimizing the trajectory. The EC algorithm
searches over the space of nonzero coefficientsin the
multiresol ution wavel et-based representation noted earlier.

As| hope this exampleillustrates, the concepts of
multimodels, anytime algorithms, and dynamic resource
management are related in that effective autonomy requires
the integration of all of them. Given aparticular situation
that requires an autonomous agent to react, it must be able:

to access the knowledge it hasthat isrelevant to the
situation in the context of its goals and abilities;

to flexibly reason about its decision and control
options, adapting the level of scale and resolutionin its
processing to the situation and objectives;

to tradeoff competing demands and requirementsin the
face of resource limitations.

Target detected:
higher resolution,
medium horizon,

rapid optimization

A O

L) Exd » - LS b n B L]

Figure 3. A framefroma simulation example of active
multimodel control for trajectory optimization.

4. ALTERNATIVE PERSPECTIVES

There are, however, other reasonabl e solutions and
perspectives to engineering autonomy that are being
proposed, and afew are briefly noted in this section.

4.1 Model-free autonomy

It seems reasonable to correlate the autonomy of a system
with the fidelity or scope of the models accessibletoit, a
connection | have made above. Thericher the explicit



representations of its environment, itself, its collaborators,
etc., that a system contains (regardless of whether these
representations are acquired through learning or are
hardwired by adesigner) the more likely that an engineering
system can operate effectively without continuous human
supervision. So amodel that can be symbolically
manipulated may be seen as a necessary condition for
autonomy.

But consider (as much research in intelligent systemsis
starting to do) an ant. There are certainly properties of ant
behavior that we would be delighted to be able to
incorporate within constructed systems with autonomy. An
artificial ant, if we were able to construct one, would be
considered to be a system with some non-trivial degree of
autonomy.

Or, if the capabilities of an ant do not warrant the
“autonomy” label, what about an ant colony? A million
ants no more make an explicit, manipulable model of the
world than an ant by itself.

The most prominent exemplar of thisline of researchin
autonomous systemsis the “ subsumption architecture” of
Brooks (1991), acentral tenet of which isthat the world can
beitsown model. No representations are needed—in fact,
they are seen as harmful sincein dynamic and ever-
changing environments they can rapidly become outdated.

4.2 Isbiology the only model?

Today, all the truly autonomous systems that exist are
biological ones. It therefore seems appropriate to mimic
salient features of biological systemsin the design of
engineered autonomy. However, an alternative viewpoint
may |lead us to question such biomimicry. Most human
engineering, an endeavor that has enjoyed considerable
successes, has not drawn design inspiration from biological
principles—airplanes are an obvious example.
Architectural sketches of brain organization (asinFigure 1)
may be dismissed asirrelevant by this argument.

Of course, until some non-biologically-inspired autonomous
artifact is produced, the study of existing autonomous
systems (i.e., biological ones) should be helpful. But it can
legitimately be argued that biology need only be aweak
model.

4.3 Autonomy need not be physically grounded
Our discussion above has exemplified autonomous systems
with UAV's, and most research in autonomy focuses on
vehicular systems (terrestrial, undersea, or in air or space).
While autonomous vehicles are a particularly exciting
prospect for future engineering systems, autonomy, asa
property, should not be considered constrained to physically
mobile platforms.

Infact, it isimportant to consider autonomous systems that
are not vehicles, since a broader understanding of autonomy
is contingent on an understanding of the full spectrum of the

topic. Different application areaswill have specific
characteristics. For example, in the processindustries there
isacontinuing drive to increase the level of automation in
plants, sometimes even quantified by a*“number of loops
per operator” metric. An autonomous decision and control
system for an oil refinery will have to deal with issues
related to high dimensionality (arefinery can have 20,000
sensors and actuators), significant delays due to material
transport (dead times can be on the order of hours), and the
lack of full state feedback.

At an even greater remove from physicality, we can
contempl ate autonomous computer and communication
networks, which need operate only in the “virtual” realm.

5. CONSCIOUSNESS—REQUIREMENT OR RED
HERRING?
The notion of developing engineered sensors or actuators, or
even low-level models of computation, that are based on
biologically gleaned principlesis uncontroversial.
Embodying higher-level cognitive capabilitiesin
computational systems, however, is another matter. Some
would argue that the sorts of phenomenafound in the brains
of humans cannot even in principle be realized by the sorts
of machines we are contemplating. The levels of autonomy,
intelligence, and adaptability exhibited by humans are
thereby excluded (the argument goes) from realization in
engineered systems.

The concept of consciousnesslies at the center of this
controversy. | takeit as given that human-like performance
by a machine requires the machine to have something akin
to consciousness—an ability to reason about and reflect on
itsown behavior, not just “blindly” follow preprogrammed
instructions.

There are two theoretical limitations of formal systems that
are driving much of the controversy—the issue under debate
iswhether humans, and perhaps other animals, are not
subject to these limitations. First, we know that all digital
computing machines are “ Turing-equivalent”—they differ
in processing speeds, implementation technology,
input/output media, etc., but they are all (given unlimited
memory and computing time) capable of exactly the same
calculations. Moreimportantly, there are some problems
that no digital computer can solve. The best known
exampleis the halting problem—we know that it is
impossible to realize a computer program that will take as
input another, arbitrary, computer program and determine
whether or not the program is guaranteed to always
terminate.

Second, by Godel’ s proof, we know that in any
mathematical system of at least a minimal power there are
truths that cannot be proven and fal sehoods that cannot be
disproved. The fact that we humans can demonstrate the



incompl eteness of a mathematical system hasled to claims
that Godel’ s proof does not apply to humans.

In analyzing the ongoing debate on thistopic, it is clear that
anumber of different critiques are being made of what we
can call the “computational consciousness’ research
program. In order of increasing “difficulty,” these include
the following:

= Biological information processing is entirely analog,
and analog processing is qualitatively different from
digital. Thussufficiently powerful analog computers
might be able to realize autonomous systems, but
digitally based computation cannot. Most researchers
do not believe that analog processing overcomes the
limitations of digital systems; the matter has not been
proven, but the Church-Turing hypothesis (roughly,
that anything computable is Turing-Machine[i.e.,
digitally/algorithmically] computable) is generally
taken asfact. A variation of this argument, directed
principally at elements of the artificial intelligence and
cognitive science communities, asserts that primarily
symbolic, rule-based processing cannot explain human
intelligent behavior.

=  Anaog computers can of course be made from non-
biological material, so the above argument does not
rule out the possibility of engineered consciousness.
Assertions that the biological substrate itself is special
have also been proposed. Being constructed out of this
material, neural cells can undertake some form of
processing that, for example, silicon-based systems
cannot. Beyond an ability to implement alevel of self-
reflection that, per Godel, isruled out for Turing
machines, specifics of this“form of processing” are
seldom proposed, although Penrose’ s hypothesis that
the brain exploits quantum gravitational effectsisa
notable exception (Penrose, 1989). (It isworth noting
that no accepted model of biological processing relies
on quantum-level phenomena.)

» |t hasalso been argued that intelligence, as exhibited by
animals, is essentially tied to embodiment.
Disembodied computer programs running on immobile
platforms and relying on keyboards, screens, and files
for their inputs and outputs, are inherently incapable of
robustly managing the real world. According to this
view, anecessary (not necessarily sufficient)
requirement for an autonomous systemisthat it
undertakes aformative process whereit is allowed to
interact with the real world.

=  Finally, the ultimate argument isavariation of the
vitalist one, that consciousness is something extra-
material. For current purposes this can be considered a
refrain of the Descartesian mind/body dualist position.
Modern variations on this theme include Chalmers
(1995)—an article that also includes arebuttal by
Christof Koch and Francis Crick.

The issue of consciousness in machines has captured the
imagination of many as aresult of the famous (or notorious)
Chinese room thought experiment suggested by John Searle
(1980). Searle imagines himself locked inside a room,
unable to communicate with anyone outside except through
slips of paper passed through aslot in the door. These slips
of paper are written in Chinese, alanguage Searle has no
knowledge or understanding of. However, Searle has been
given avoluminous “script” that details (in English) the
algorithmic manipulations that he should carry out upon
receipt of messages. Some of the messages can have
guestions written on them, others may describe a story.
Searle allows that the script is perfect in that the
manipulations result in responses that Searle can transcribe
(the symbols that he reads, manipulates, and writes are
meaningless squiggles to him) and pass back to his
interrogator. These responses are in fact appropriatein
context; to the person outside, Searle must understand
Chinese. The point of the Chinese room (thought)
experiment isthat knowing how the responses were
generated we would not say that Searle “ understands”
Chinese. Thisisacritique of one school of thought that

mai ntains that rule-based algorithmic processing is
sufficient for understanding. Variations of the experiment
and the argument have since been directed at other types of
automated mechanisms.

Consciousness is a multifaceted phenomenon. | would
maintain that reflective, deliberative decision making isan
important element, although admittedly not the only one.
Thus the technical concepts discussed earlier—multimodels,
anytime algorithms, dynamic resource allocation—which, |
argued, are essential for high-performance autonomous
behavior, are by the same token necessary correl ates of
consciousness. (Our observations of) our own conscious
processing support(s) this contention—we dynamically
allocate cognitive resources as appropriate for an unforeseen
situation, scale the precision and resolution of our
processing accordingly, and rely on our knowledge of the
various systems and phenomenathat constitute our
environment.

6. TOWARD M ETRICS

Even for humans, testing and quantifying intelligenceisa
controversial activity. Thedifficulty of compressing the
multifaceted nature of intelligence into one scalar quotient
has |ed to proposalsto consider “intelligence” not asone
unitary quantity but as a collection of propertiesthat are
mutually incommensurable (e.g., Gardner, 1983).

But humans, as a species, have much in common. We all
have the same sensory apparatus; the same physiol ogy,
more or less; the same innate drives; the same
communication apparatus; etc. If quantifying intelligenceis
so problematic for humans, one can wonder whether it is
even sensible for artificial systems, which may have little or
nothing in common. Comparing and contrasting the



intelligence of an intelligent search engine for the Web with
the intelligence of an autonomous vehicleis a challenge that
is not only huge but perhaps unaddressable. We will need
to decompose the notion of intelligence in this case too,
except that instead of a handful of separate factors we might
end up with amuch larger number.

Thetechnical concepts | have focused on in this paper can
all be considered dimensions along which autonomy and/or
intelligence can be measured. The extent to which an agent
has available explicit models of relevant phenomena and
systems, the scaling capabilities of the anytime algorithms
available toit, and the sophistication of its adaptive
computational resource allocation mechanisms, al bear on
how well the agent will perform in acomplex, dynamic
world. Moreresearch is needed before these connections
can be formalized or quantified—I have been concerned
here with just their identification.
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Abstract

This paper makes a distinction between
measurement at surface and deeper levels. At
the deep levels, the items measured are
theoretical constructs or their attributes in
scientific theories. The contention of the paper is
that measurement at deeper levels gives
predictions of behavior at the surface level of
artifacts, rather than just comparison between the
performance of artifacts, and that this predictive
power is needed to develop artificial intelligence.
Many theoretical constructs will overlap those in
cognitive science and others will overlap ones
used in different areas of computer science.
Examples of other “sciences of the artificial” are
given, along with several examples of where
measurable constructs for intelligent systems are
needed and proposals for some constructs.

Introduction

There are a number of apparent ways and
certainly many more not so apparent ways to
measure aspects of performance of an intelligent
system. There are a variety of things to measure
and metrics for doing so being proposed at this
workshop, and it is important to discuss them.
To develop a measure of machine intelligence
that is supposed to correlate with the system’s
future performance capability on a larger class of
tasks considered intelligent would be analogous
to human 1Q. That would require agreement on
one or more definitions of machine intelligence
and finding a set of performance tasks that can
predict the abilities required by the definition(s),
and still might not say much about the nature of
machine intelligence or how to improve it.

One reason that metrics of performance
(and perhaps, of intelligence) are needed is that
they directly address the fact that it has been
difficult to compare intelligent systems with one
another, or to verify claims that are made for
their behaviors.  Another reason is that having
measurements of qualities of any sort of entity
provides a concrete, operational way to define
the entity, grounding it in more than words

alone. All of these aspects - comparability,
verifiability, and operational grounding - were
undoubtedly at least part of what Lord Kelvin
meant about measurements providing a feeling
that one understood a concept in science. (See
the preamble to this workshop [Meystel et al 00]:
"When you can measure what you are speaking
about and express it in numbers, you know
something about it.")

The measurements that form the primary
topic of this paper are of a different type. They
are ones that look ahead to the future, when the
intelligent systems or artificial intelligence” field
is more mature. The notion of mature field is
defined here in terms of scientific theories that
predict the performance of the systems on the
basis of the underlying science. It is suggested
that really valuable measurements require
reliable predictions of this scientific sort, rather
than just ways to compare the technological
artifacts based on the science. To do this, it is
necessary to develop theories containing
measurable theoretical constructs, as will be
discussed below.

The discussion of metrics for attributes of
theoretical constructs herein does not conflict in
any way with the idea of overall system
measurements, comparisons, or benchmarks,
which are useful for the purposes mentioned
above. In fact, it is a philosophical problem to
decide where theoretical constructs stop and
empirical constructs begin. Measurements of
artifacts will be referred to as surface
measurements, those of a more theoretical
nature as deep measurements, terms borrowed
from Noam Chomsky’s [65] terms for levels of
syntactic description. The question of “how
deep” can be left open at this time. This paper
advocates looking for measurable theoretical
constructs at the deeper level that will predict
surface behaviors at the level of the system or
subsystem, or of an entire artifact.

* The latter term will be used herein because the
shortened form, “Al” is more common than “IS”.



The remainder of the paper explains the
form that we will expect for Al theories in the
future if they are to qualify as scientific theories
and suggests theoretical constructs that may have
measurable properties. It will discuss existing
constructs that are developing as candidates for
deep metrics and how they may relate to surface
measurement. It will compare them to constructs
in existing scientific theories at deep and surface
levels. It will suggest that they will naturally
relate to constructs from the artificial and natural
sciences, specifically from cognitive science and
computer science.

Computation  Centered and Cognition
Centered Approaches to Al

At all levels, from surface to deep, the
constructs to be measured may depend on the
approach taken to Al. There are two
distinguishable approaches that have been taken
over the years, which we will call “computation
centered” and “cognition centered””.  The
computation centered approach focuses on how
certain tasks can be accomplished by artificial
systems, without any reference to how humans
might do similar tasks. We do not usually think
of numerical calculation as Al, but if we did, we
would have to think of the way it is done as
computation centered. There is no particular
reason to make it cognition centered.

In the cognition-centered approach to Al,
the tradition is to discover human ways of doing
cognitive tasks and see how these might be done
by intelligent systems. Sometimes the
motivation for this approach has been to try to
find plausible models for human cognitive
processes (cognitive simulation), but for Al
purposes, it has often been a matter of using
human clues to try to accomplish the
computation  centered  approach. Some
researchers feel that developing the artifacts
using cognitive ideas may lead to more robust Al
systems (using “robust” in the sense that the
system is not narrow or “brittle” in its intelligent
capabilities). But it is a natural way to think
about the developing Al capabilities, since not
all areas related to intelligent activities have been

“ In the email exchange leading up to the
Workshop, a third approach, “Mimetic
Synthesis”, whose prime concern is the “Turing
test” one of representing a computer to a human
user as if it were another human, was
distinguished from the two mentioned by Robby
Garner. It is a good distinction, though like the
others, the boundaries are not always clear.

explored and reduced to mathematical methods
to the extent of numerical calculations, or even
of mathematical logic, which might directly
facilitate a computation centered approach.

Mathematical logic makes an interesting
case for pointing out that most Al researchers in
practice blend the computation centered and
cognition centered approaches, since it is
formalized, yet still can be approached in a
cognition centered way. Computers actually
implement mathematical logic, which is essential
in control statements of programming languages.
However, actually proving theorems in logic
(beyond propositional logic, where truth-table
methods can be used), is a creative intelligent
activity. There, things become more complex, in
different ways. The first complexity is that is a
creative activity and we do not really understand
even how people do it.  Secondly, it is
informationally complex: there are inherent
undecidability problems in logics of sufficient
richness for most interesting purposes.

In attempts to make it easier for humans to
prove theorems, natural deduction methods were
invented by Gentzen [34] and developed by a
number of people, notably Fitch [52]. In a sense,
natural deduction can be thought of as a
computation-oriented  version of theorem
proving, taking away some of the mental work of
creativity. But this does not change the inherent
informational complexity problems, which
provide inherent limits on computability.

Going beyond logic to general problem
solving one finds some empirical studies of
effective ways in which humans do it that
antedate the computer. One of them, means-ends
analysis, was codified in the General Problem
Solver (GPS) program of Newell and Simon.
[63] (See also Ernst and Newell 65]. For
programs in the GPS era, it was in the spirit of
that work to attempt measurement of the extent
to which the program could mimic human
behavior. This was done by also studying verbal
protocols of people solving the problem. Any
way of comparing those to the performance of
the program was still pretty much a surface
measurement. Such surface measures of
cognitive performance, are also the heart of the
Turing test [Turing 50], but do not tell us much
about what is happening deeper in the system, as
Joseph Weizenbaum showed with Eliza [66]
(and emphasized in an ironic letter [74]). In
more recent times, case-based methods have
been advocated [Kolodner 88] as relating to the
way some people solve problems and they do



look very promising. Some of the constructs
from these problem-solving methods will be
mentioned below.

Though computation centered and cognitive
centered  approaches blend  well, the
measurements that occur to the developers in the
two approaches will naturally differ, and this is
particularly true as one tries to go to a deeper
level by using constructs that are based either on
cognition or on computation. In other words, Al
may have measurable constructs coming from at
least two different sources, the computation side
and the cognitive side. This fact has some
interesting implications as one looks at the
measurement of deeper constructs, which may
have to be reconciled with both approaches to be
meaningful.

The Structure of Scientific Theories

Today’s views of scientific theory have
changed from those held in the 19" Century,
Lord Kelvin’s time. The bare-bones version of a
scientific theory today is that it consists of a
model composed of abstract theoretical
constructs and a calculus that manipulates these
constructs in a way that can account for
observations and accurately predict the value of
experiments. The model is as central today as
was the notion of measurement to Kelvin. The
theoretical constructs have a relation with
observed entities, properties and processes that
may be quite abstract, not necessarily readily
available to human senses, but following directly
from calculations based on the theory. There are
a number of principles applied to a model that
give us increased confidence in the theory, but
the one most relevant here is that we can
measure the observed entities to confirm the
predictions of the theories. So Kelvin’s concern
has been preserved, but augmented, in today’s
view of theories.

It is relevant to observe that the “calculus”
mentioned above is used in the dictionary sense
“a method of computation or calculation in a
special notation (as of logic or symbolic logic)”.
That means that it may be numerical or non-
numerical. In fact, as Herb Simon and Allen
Newell [65] pointed out, there is no reason that
the calculus cannot be expressed in the notation
of a computer program, the better to speed its
manipulation of the theoretical constructs.

For scientific theories in Al to be
respectable, there will be certain requirements on
them, and these affect whether they are accepted

or not and whether the theories in which they
occur are accepted. The late Henry Margenau
had a pragmatic treatment of these requirements
in his book The Nature of Physical Reality
[Margenau 50]. A working Physicist as well as a
philosopher, Margenau stressed that no amount
of empirical evidence was scientifically
convincing by itself, since it did not specify a
unique model; and he also stressed the need for
the binding of theoretical constructs to one
another in a "fabric". This fabric was made up of
theory and of mappings to empirical data. The
theory was convincing to the degree that certain
criteria were met - not a "black and white"
situation, but one of degree. One of the criteria
was the extent to which the models and
constructs were extensible to larger and larger
areas of scientific endeavor. As the fabric of the
theory became larger and stronger, it became
more difficult to rip it asunder.

Perhaps our emphasis on finding metrics can
solidify the theoretical constructs of the field, as
well as providing a means of measuring
progress. The key to doing this is not to think of
evaluation only as measurement of some
benchmarks or physical parameters
(“behaviors”) that are manifested in the
operation of the systems being evaluated. We
need to be thinking in terms of the inner
workings of the systems and how the parameters
within them relate to the measured externally
manifested behaviors.

One of Lord Kelvin's special interests was
temperature. Temperature is of course
something that we experience, something not
wholly abstract. Certain physical properties are
related to temperature, and the most easily
observed is freezing and boiling of water. It took
some scientific discovery to realize that each of
these phenomena always take place at a
particular (with a few reservations, like altitude
and purity of the water), but still, those are
concrete embodiments. Temperature has been a
subjective attribute during most of the history of
mankind, but the scientific notion of temperature
is a theoretical construct, even though it has a
close correspondence to subjective experience.
The particular metrics chosen related to water
boiling (in both Fahrenheit and Celsius), to
Freezing (in Celsius), and to the "coldest"
temperature that could be achieved with water,
ice and salt (in Fahrenheit). Lord Kelvin also
took the amazing step of developing a notion of
temperature that is really abstract. His zero point
of minus 273.15 degrees Celsius has never quite



been reached, and is far below what any person
could experience. Yet it is very real as a
scientific construct, one that is part of the fabric
of physical science and ties various aspects of
science together in that fabric.

Many other common terms in physical
theory, like mass and gravity, are theoretical
constructs, though they are related to human
senses. Only in relatively recent physics history
have mass and gravity been understood, and we
owe that understanding to bits of inspiration on
the part of Galileo and Newton. Having only
half a century of Al history to look back on, we
cannot really expect to have such a firm fabric of
theoretical constructs stitched together. But
some ideas are given below, after a comparison
of Sciences that study natural and the artificial
systems.

Sciences of the Artificial and their relation to
Natural Sciences

Herbert Simon came to the conclusion that
there was a place for what he called “Sciences of
the Artificial” in his important book [69]. He did
not invent the study of artifacts in a systematic
manner, but he realized accurately and acutely
that that artifacts could be subjects of “real
sciences”, with deep theories of the sort that exist
in natural sciences. We will now consider some
of the implications of this idea.

The boundaries between sciences of the
artificial and the natural sciences are not clear-
cut in practice because nature colors human
artifacts, determining their possibility and their
features. The “engineering sciences”, the
portions of engineering that has been formalized
in the sense of that they can predict the behavior
of artifacts, including aspects such as stability
and strength can be considered sciences of the
artificial. The reason that this is not remarked
upon more often is that they have called upon
physical sciences more and more over the
centuries to aid the “ingenuity” that gives the
profession its name.

Linguistics is a science of the artificial.
Human language is the artifact that it studies.
But of course, the properties of the artifact are
shaped by the natural properties of human
learning and cognition, human hearing and
speech in many ways. In the domain of
phonetics, for example David Stampe’s “natural
phonology” [Stampe 73, Donegan and Stampe
79] characterizes some of the interactions
between language as an artifact and as a natural

phenomenon. We do not understand even yet the
extent of the interaction between linguistics and
human cognition. Is there an LAD (language
acquisition device) [Chomsky 75] innate in
humans that is specific to language, or is the
learning of language based on the same
principles as such other acquired systems as
visual perception? Nobody knows for sure; but
whatever the case, the nature of the world and
the nature of learning processes must affect
language.

Computer Science is a science of the
artificial. Certainly, this is true insofar as it
studies computers, which are artifacts; but also to
the extent that it studies algorithms, which are
human creations, too. The main subject studied
in much of Computer Science is not computers
but information, and the “state”, which is all the
relevant information about a system at a given
time, is therefore a fundamental theoretical
construct. Information is a theoretical construct
that is also fundamental in the natural sciences,
but whose significance as a theoretical construct
has only become apparent in this century, as its
relationship to entropy and its role in quantum
theory have been realized. So again, Computer
Science has both artificial and natural parts.

Economics, another science of the artificial,
studies a major artifact, the economy, and
looking at this science of the artificial can
provide some insight into the position of Al as a
science of the artificial, and of the role of
measurable theoretical constructs.

Predictive Measurement in a Science of the
Artificial - An Example from Economics

Economics has struggled for longer than Al or
computer science has existed to find theoretical
constructs that have predictive power. It deals
with large amounts of aggregated data, so the
empirical data are statistical in nature. As of this
date, economic theory is still not as crystal-clear
as physics in terms of the role of its theoretical
constructs, but its theoretical constructs,
measured by expensively-gathered data by
governments and multi-governmental agencies,
are used regularly.

Recently, the U.S. Federal Reserve has been
aggressive in raising interest rates because the
unemployment rate (a construct measured by job
creation and unemployment data) has been high
and economic growth (a construct measured by
GDP change and other data) has been rapid. In
their models, these predict higher inflation (a



construct measured by PPI, CPI, and other data).
Somewhere in the complex equations that
describe the relationship among these theoretical
constructs, and the construct inflation, it has
recently been noticed that there is a need for the
construct productivity. Economic theory must
relate these constructs and others: average
interest rates, demand for money and goods,
money and commodity supply, savings rate, etc.

The definition of the constructs mentioned
above is still hazy, and the relations among them
are not mathematically precise. Some economic
theories are incorporated in complex computer
models. Their predictive value is not great, but
they are getting better, and provide an example
of the sort of prediction that is desirable for Al.

Surface Measures and Theoretical Constructs
in Al — Some Examples

The sort of predictive ability that economists
want, we would like to see in Al, too. If we have
theoretical constructs at some deeper level, we
can also use the theories of which they are a part
to simulate or predict mathematically what
happens if we increase or decrease parameters
related to those constructs. It is a thesis of this
paper that there are theoretical constructs that
can predict system performance measured in
terms of surface measures. At this point in the
development of Al as science, it is hard to say
just exactly what they would be, but some ideas
can be drawn from today’s Al and related
subjects.

An Example Construct: Robustness

A surface measurement that could be very
valuable across a variety of systems is some
measure of robustness — the ability to exercise
intelligent behavior over a large number of tasks
and situations. From a computation-centered
standpoint, if systems become robust, Al
progress would be easier to see. From a
cognition-centered standpoint, a system can
never really be intelligent if it is not robust. (One
way to think of a measure of intelligence in a
single system would be as a measure of
performance, robustness and autonomy.) The
surface way to determine the robustness of a
system would be to try it on a number of tasks
and see how broad its methods are. But what
makes intelligent systems robust? Learning
ability, experience, and the ability to transfer that
experience to new situations are all things that
come to mind. A rough sketch of how
measuring theoretical constructs in those areas

might give us a predictive figure for developing
robust systems is given below.

Robustness: Learning?

If learning can make systems more robust, it
should be interesting to measure the strength of
the system’s learning component. How easily
does it adapt the system to a new situation?
Unsupervised learning has wide applicability,
but it can basically only determine clusters of
similar items.  Supervised learning must be
presented with exemplars to learn relations,
which seems not to be enough for a machine to
extend its own capabilities. Reinforcement
learning (RL) is a blend of both cognitive and
computational centered Al. It started out as a
model of classical conditioning, but turned out to
be applied dynamic programming. There are a
number of different techniques within RL, all of
which have many possible applications. Neural
nets or other approaches may be used. The
theoretical constructs include the state space
chosen, the reinforcement function, and the
policy. The field is becoming quite
sophisticated, and there are known facts about
the relation of these to outcomes in particular
cases [Mahadevan and Kaelbling 96]. Suppose
that a reinforcement learning system constitutes
a part of the intelligence of an intelligent system.
There should be some way of predicting how
that system would do wupon encountering
problems of a certain nature. By knowing how it
chooses the concepts in its system and how they
react on problems of that type, one can provide a
partial evaluation of how effective the learning
system would be. By obtaining such figures for
all such subsystems, one could relate them to the
performance of the full intelligent system. There
is much work to be done in that direction.

Under certain circumstances, one can
imagine learning extending robustness; but
having to learn each new variations of a problem,
even by reinforcement, is unlikely to lead to
robustness quickly. It is expected that reinforced
behaviors learned in one situation might be
identical to those needed in another system, so
this may lead to more rapid or better learning in
the second situation. One approach to this is to
condition behaviors that are not built into the
system initially, as explored by Touretzky and
Saksida [97]. But, still, one would like to have
more general ways of reusing “big pieces” of
learned knowledge.

Robustness: Transfer of Learning?



Transfer of learning is a phenomenon that
we may be able abstract to theoretical constructs
that can help to predict robustness. It is still not
a deep measure, so it will then be important to
predict transfer of learning from deeper
constructs which will be mentioned below. At
present, it is a research challenge to build
transfer of learning into systems. But it is
possible to see how one could test for it.

As far as measurement, here is roughly how
transfer of learning might be measured:

1. Machine performance is measured on Task
1. The score is P(t1, T1)) = performance at
time t1 on Task 1. P is some suitably broad
performance measure.

2. Performance is measured on Task 2 without
learning (this being an artifact where we can
control learning) to obtain P(tl, T2)
(keeping the time variable the same because
the same machine abilities are assumed
without learning even if the measurements
are not simultaneous).

3. Note that if the measure is to have a
meaning, previous training that might affect
T1 or T2 must be controlled for, which
could be difficult.

4. The machine is now allowed to perform task
T1 in which it learns, achieving better
performance at some time t2, i.e. P (2, T1)
> P (t1, T1).

5. It is then tested on T2, and the question is
whether P (t2, T2) > P (t1, T2) without
having done additional learning on Task 2.

If indeed P (2, T2) > P(tl, T2) in some
quantifiable way, the system has achieved (at
least locally) one of the goals of Al, the transfer
of learning from T1 to T2. The amount of
transfer can be measured by the amount of
improvement on task2 as a function of the
amount of training on task T1. Let us assume
that we can describe this by some transfer
effectiveness function, E for the system being
tested. Let us say E(T1, T2, t) gives “the
effectiveness of training on T1 for time t in terms
of transfer toT2”. We could describe this by a
graph of performance on T2 as a function of
time being spent on T1.

Developing such a measure of transfer of
learning and getting it accepted is not simple. To
be useful, we would need a way of comparing T1
and T2, to be sure that the second task is not just
a subtask to the first. Difficult or not, defined
measurements such as these are steps toward
understands the construct “transfer of learning”

and achieving it in artifacts. The measurable
transfer construct would, in turn, help to provide
a measurement of robustness, since learning
transfer can make a system more robust. It is a
step toward measurement of intelligence, at least
by some definitions of intelligence, and,
intuitively, at least, would have some predictive
power.

How might we go about defining the
similarity of T1 and T2, as suggested above? We
would have to decide what we mean by
similarity of task. An interesting essay in this
area is “Ontology of Tasks and Methods”
[Chandrasekaran, Josephson and Benjamins

[98]].

Various  candidates  for  potentially
measurable constructs that could be used to
produce transfer but also to relate transfer to
other phenomena are mentioned in a book edited
by Thrun and Pratt [98], who have both had a
research interest in learning-transfer processes.
From the computation side comes the possibility
of changing inductive bias. From the cognition-
centered side, there is generalization from things
already learned; but overgeneralization can be a
major problem in learning, so it needs to be
constrained. (Some simple constraints on
overgeneralization in language learning are
discussed in [Reeker 76].)

Robustness: Case-Based Reasoning?

Case-based reasoning is an intuitively
appealing technique that was mentioned earlier
in this paper. The idea is that one learns an
expanding set of cases and stores the essentials
of them away according to their conventional
features. They are then retrieved when a similar
case arises and mapped into the current case.
Potential theoretical constructs include indexing
and retrieval methods for the cases, case
evaluation and case adaptation to the new
situation. The cases could also be abstracted and
generalized to various degrees, to a model.

Case-based reasoning is important for
cognition centered Al. It is intuitively the way
many people often figure out how to do things,
and is thus embodied in the teaching methods of
many professional fields — law, business,
medicine, etc. It provides a launching pad for
creativity as well, as mappings take place from
one case to an entirely new one. Perhaps the
new case is not really concrete, but a vague new
idea. Then the mapping of an old case to it may
result in a creative act — what we usually call



analogy. Analogy, metaphor in language, is a
rich source — absolutely ubiquitous — of new
meanings for words, and thus of new ways to
describe concepts, objects, actions. Perhaps one
key to robustness is the ability to use analogy.
Four interesting papers by researcher in the area
can be found in an issue of American
Psychologist [ Gentner et al 97 ].

Existing Surface and Subsurface Performance
Measures

Researchers in text-based information
retrieval (IR) have traditionally considered
themselves not to be a part of the Al field, and
some have even considered that artificial
intelligence was a rival technology to theirs; but
there is an overlap of interest. It is worth noting
that IR has had a useful surface measure of
system performance that has guided research and
allowed comparison of technologies.  The
measure consists of two numbers, recall and
precision [Salton 71]. Recall measures the
completeness of the retrieval process (the
percentage of the relevant documents retrieved).
Precision measures the purity of the retrieval (the
percentage of retrieved documents judged
relevant by the people making the queries). If
both numbers were 100%, all relevant documents
in a collection would be retrieved and none of
the irrelevant ones. Generally, techniques that
increase one of the measures decrease the other.
Real progress in the general case is achieved if
one can be increased without decreasing the
other.

For the IR community, better recall and
precision numbers have both shown the progress
of the field. They also show that it is still falling
short, keeping up the challenge, especially as the
need to use it for very large information corpora
rises. In addition, they provide a standard within
the community for judging various alternative
schemes. Given a particular text corpus, one can
consider various weighting schemes, use of a
thesaurus, use of grammatical parsing that seeks
to label the corpus as to parts of speech, etc., to
improve the retrieval process. The interesting
thing is to relate these methods and the
characteristics of the corpus to precision and
recall, but so far that has not been sharp enough
to quantify generally.

Related to information retrieval is automated
natural language information extraction, which
tries to find specified types of information in
bodies of text (often to create formatted
databases where extracted information can be

retrieved or mined more readily). A related but
different (cost-based) measure was defined
several years ago for a successful information
extraction project [Reeker, Zamora and Blower
83]. One measure was robustness (over the
texts, not different tasks as in the broader
intelligent systems usage discussed earlier). This
was defined as the percentage of documents out
of a large collection that could be handled
automatically. The idea was that some
documents would be eliminated through
automated  pre-screening  (because  those
documents were not described by the discourse
model the system used) and relegated to human
processing. Another measure was accuracy (the
percentage of documents not eliminated that
were then correctly processed in their entirety,
by the system). Yet another was error rate (the
percentage of information items that were
erroneous — including omitted - in incorrectly
handled documents). From this more detailed
breakdown, estimates of the basic cost of
processing the documents, based on human and
machine processing costs and costs assigned to
errors and omissions, was derived. The measure
could be wused to drive improvements in
information extraction systems or decide whether
to use them, compared to human extraction
(which also has errors) or to improve the
discourse model to handle a larger portion.

For information extraction projects, it was
further suggested that the cost of erroneous
inputs might drive a built-in “safety factor” that
could be varied for a given application [Reeker
85]. This safety factor was based on linguistic
measures of the text (in addition to the discourse
model) that could cause problems for the system
being studied. The adjustable safety factor could
be built into the prescreening mentioned above.
In other words, the system would process
autonomously to a greater or lesser degree and
could invite human interaction in applications
where the cost of errors was especially high. It
was suggested that the system would place
“warning flags” to help it make a decision on
screening out the document, and these could also
aid the human involved. Although this was a
tentative piece of work, the idea of tying a
surface measure (robustness) into the underlying
properties of the system is exactly like tying
measurable surface properties into underlying
theoretical constructs. The theoretical constructs
mentioned in this case were structural or
semantic ones from linguistics.



From the area of software engineering
comes another tradeoff measure that is worth
mention. The author did some work on ways of
providing metrics - surface metrics, initially - for
program readability (or understandability)
[Reeker, 79].  Briefly, studies of program
understanding had identified both go-to
statements and large numbers of identifiers
(including program labels) as problems. At the
same time, the more localized loop statements
could result in deep embeddings that were also
difficult to understand for software repair or
modification. The vague concept of readability
could be replaced by a measure of go-to
statements and maybe also one of the number of
different identifiers. This particular study
suggested depth of embedding as a problem and
also suggested a tradeoff between depth of
embedding a metric called identifier load.
Identifier load was a function of the number of
identifiers and the span of program statements
over which they were used. Identifier load
tended to increase as depth of embedding was
reduced by the obvious methods.

There were a number of similar software
metrics studies in the 1970s, and they continue.
This approach, however, was part of an attempt
to look at natural language for constructs that
might be of relevance in programming languages
and programming practice [Reeker 80]. The
depth measure was based on an idea of Victor
Yngve [60], which came out of his work in
linguistics - an idea that retains a germ of
intuitive truth. Yngve had in turn related his
natural language measure of embedding depth to
measures of short-term memory from cognitive
psychology. Whether these relationships turn
out to be true or lead to related ideas that are true
or not, they illustrate how theoretical constructs
can stitch Al, computer science, and other
artificial and natural sciences together. They
also illustrate the quest for metrics that can firm
up the foundations of the sciences.

More Constructs To Be Explored

There are many more existing theoretical
constructs that have arisen within Al or been
imported from computer science or cognitive
science that beg to be better defined, quantified,
and related to other constructs, both deep and
surface.

Means-ends analysis and case based
reasoning have both been mentioned as forms of
problem solving. How do these cognitive
characterizations of problem solving relate to
one another? At a deeper level is the construct

of short term memory mentioned in the previous
section in relationship to Yngve’s depth. How
does short-term or working memory relate to
long term memory and how are the two used in
problem solving? The details are not known.
The size of a short-term memory may not be as
relevant in a machine, where memory is cheap
and fast. But we cannot be sure that it is not
relevant to various aspects of machine
performance because it is reflected at least in the
human artifacts that the machine may encounter.
For instance, in resolving anaphora in natural
language the problem may be complicated if
possible referents are retrieved from arbitrarily
long distances.

A similar problem arises from long-term
memory if everything ever learned about a
concept is retrieved each time the concept is
searched for. This can lower retrieval precision
(to use the term discussed earlier for machine
retrieval) and cause processing difficulties on a
given problem. It may be that Simon’s notion of
bounded rationality is a virtue in employing
intelligence. ~ Are we losing an important
parameter in intelligence if we try always to
optimize rationality? For Al system, anytime
algorithms  and  similar  constructs  for
approximate, uncertain, and resource bounded
reasoning have been developed in recent years,
and hold a good deal of promise [Zilberstein 96].

An interesting theoretical construct arising
out of Al knowledge representation and the
attempts to use it in expert systems and agents
and for other purposes is that of an ontology.
“Ontology” is an old word in philosophy
designating an area of study. In Al it has come
to designate a type of artifact in an intelligent
system: The way that that system characterizes
knowledge. In humans, ontologies are shared to
a large degree, but certainly differ from every
person to every other, despite the fact that we
can understand each other. Are some ontologies
indicative of more intelligence than others in
ways that we can measure? One suggested
criterion for high intelligence is the ability to
understand and use very fine distinctions (or to
actually create new ones, as described in Godel’s
memorandum cited by Chandrasekaran and
Reeker [74]). Is an ontology’s size important, or
its organization, or both? Can one quantify a
system’s ability to add new distinctions?

A related issue is vocabulary. Many people
think that an extensive vocabulary, used
appropriately, is a sign of intelligence, or at least
scholastic aptitude. In computer programs that



do human language processing, the vocabulary
consists of a lexicon that generally also has
structural (syntactic) information for parsing or
generating utterances containing the lexical item
and meaning representations for the lexical item.
The lexicon can be much larger than any
human’s vocabulary; but for the vocabulary to be
used appropriately for language production or
understanding, it still falls far short of the human
vocabulary. For that to be improved better
techniques of semantic mapping are required,
including links to ontologies and methods of
inferring the ontological connections and of
idiosyncratic aspects of speakers with which a
conversation is taking place. Is the vocabulary an
indication of the size of the ontology and the
distinctions it makes, or vice-versa? Nobody
knows; but better theories of how they link up
are needed for both understanding and fully
effective use of human language by intelligent
systems.

Another cognitive concept that is still a
mystery is creativity, certainly a part of
intelligence, or at least of high intelligence.
Does the ability to add entirely new concepts,
not taught, constitute creativity? How does one
harness serendipity to develop creativity? Is
creativity linked with sensory cognition, the
cognitive phenomena related to senses, such as
vision, including perception, visual reasoning,
etc. There is a need for deep theoretical
constructs underlying notions like creativity, and
for measures of these constructs and their
attributes [Simon 95, Buchanan 00].

Turning to computational constructs, we
notice that much of the Al described above takes
place through various forms of search. Already
there exists a pretty good catalogue of variations
on search and how to manage it, in which a good
deal of theory is latent. Some of the search is of
a state space, involving the ubiquitous state
concept basic to theoretical computer science.
Search is also coupled with pattern matching,
which underlies many of the methods mentioned
earlier in this paper.

The potential constructs mentioned here are
just a sample of the ones already available in
Artificial Intelligence, and to them should be
added others found in some of the major works
of Newell and Simon on Problem Solving and
Cognition [Newell and Simon [65], Newell

[87]].

Summary and Author’s Note

The development of a true science of
artificial intelligence is something that has
concerned the author for a long time. It has been
encouraging to see the development within the
field of interesting and non-obvious theoretical
constructs.  This paper has suggested that
theoretical constructs with attributes that we can
measure are especially valuable and it has
suggested a number of such candidates. The
paper suggests that we enlist Lord Kelvin’s
emphasis on measurement in choosing such
constructs. These same measurable theoretical
constructs will in many cases relate (at least at
deeper levels) to those of cognitive science,
computer science, and other sciences. They will
help predict measures at the surface that can be
used to provide metrics for the performance (and
through that, the intelligence) of intelligent
artifacts. We should have in mind the quest for
such measurable constructs as we move forward
in creating intelligent artifacts.
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ABSTRACT

An essential feature of intelligence is the ability to make autonomous
choices. A new paradigm of satisficing decision making incorporates
two utilities for decision making, rather than the usual single utility
that is characteristic of optimal decision making. These two utilities
may be used to define figures of merit for the intellectual power or
fitness of the decision maker asit functions in its environment. These
utilities may also be applied in group settings. In particular, societies
of negotiatory decision makers may undergo considerable tension as
they attempt to reach a compromise that is acceptable to the group as
awhole and to all members of the group.
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1. INTRODUCTION

There are three issues that must be addressed in the design of
an intelligent decision system: (@) defining the alternatives, (b)
defining the preferences, and (c) choosing between the aterna
tives as a function of the preferences. The first two issues are
highly dynamic. Alternatives may appear and disappear and
preferences may change. Much of the study of intelligent sys-
temsis properly focused on these dynamics. At the moment of
truth when a decision must be made, however, we must assume
that the aternatives and preferences have been defined, and all
that remains is to make the choice. This paper focuses on this
last, consummate step.

The ability to make decisionsis essentia to intelligent be-
havior. Indeed, the word intelligent comes from the Latin roots
inter (between) + legere (to choose). We thus assume that there
is only one essential characteristic of intelligence in man or
machine—an ability to choose between alternatives.

Choices between aternatives, or decisions, are usually jus-
tified by the maximization of expected utility, an approach Si-
mon calls substantive rationality [8]. We argue that for mul-
tiple agents, especialy those in dynamic environments, the re-
quirement for substantive rationality is too demanding. First,
athough a solution may exist, the information or computing
power necessary to find it may be unavailable. We will often be

forced to fall back on what Simon terms procedural rationality,
or the reliance on heuristic or ad hoc procedures defined by an
authority. Second, and more serious, is that the existence of an
optimal solution may be in doubt. Von Neumann-Morgenstern
game theory shows that for many games a solution that is si-
multaneously best for the group and for each individual in the
group simply does not exist. This seemsto imply that a theory
of group decisions satisfactory for the synthesis of coordinating
agents cannot be obtained by a strai ghtforward maximization of
utility.

We are thus motivated to consider definitions of rational-
ity upon which we can build a more robust theory of intelligent
multi-agent decision making. We hold that the fundamental
obligation of arational decision maker isto make decisionsthat
are, in some well-defined sense, good enough. Historically, the
study of good enough decisions was first formalized by Simon,
when he introduced the term satisficing to characterize deci-
sions that achieve the decision maker’s aspiration level [6, 7].
This notion of satisficing defines quality according to the crite-
riaused for substantive rationality, but evaluates quality against
a standard that is chosen more or less arbitrarily. It essentially
blends substantive and procedural rationality, and is a species
of what is often termed bounded rationality.

Rather than blend the two extremes of substantive and pro-
cedural rationality ala Simon, our work explores an aternative
which leads naturally to a set of satisficing solutionsthat is con-
sistent with Simon’sintent. It also guarantees the existence of
jointly rational decisions, and seemsto be a natural vehicle for
the design and synthesis of intelligent decision systems.

We start by assuming that the most primitive way to make
decisions is to make intra-option comparisons in the form of
dichotomies. We define two distinct (and perhaps conflicting)
sets of attributes for each option and to either select or reject
the option on the basis of comparing these attributes. Such di-
chotomous comparisons are intrinsic, since the evaluation of
an option’s meritsis not referenced to anything not directly re-
lated to the option, including other options. They are also local
comparisons; it is not possible to form a global ordering the
options on the basis of such comparisons. Anintrinsically ra-
tional choiceis one for which the decision maker’s benefits are
a least as great as its costs. We define a satisficing decision



as one that isintrinsically rational,* because these options are
good enough, in the sense that their attributes have been favor-
ably compared with a standard. We differ from Simon only
in the standard used for comparison: the positive and negative
attributes of each option, versus externally supplied aspiration
levels.

Intrinsic rationality appearsto be aweaker notion than sub-
stantive rationality. Although it identifies all options that are,
in the sense we have defined, good enough, it does not insist
on a unigque solution. At the moment of truth, the decision
maker may choose any of the satisficing options with the as-
surancethat it will at least get its “money’sworth.” In practice,
however, the advantage of a theory founded on substantive ra-
tionality may be more illusory than real. Objective functions
themselves are often created by an ad hoc combination of pref-
erences into a single performance index, and this combination
can be, and usually is, manipulated until satisfactory behavior
is achieved. Thus, even optimization approaches rely in their
application on satisficing notions, however informally.

As mentioned earlier, our approach to intrinsic rational-
ity requires the definition of two preference functions, one to
characterize the desirable attributes, and one the undesirable
attributes, of each option. An option is desirable to the degree
that it achievesthe goal. Itis undesirableto the degreeto which
its adoption consumes the decision maker’s resources, such as
energy, safety, or other costs. Separate preference functions
permit the development of metrics to evaluate how suited the
decision maker is to function in its environment. Intuitively,
if a decision maker has options available to it that achieve its
goal with low cost, it is well-suited for its environment. On
the other hand, if it must incur great cost or undergo great risk
to achieve its god, it is clearly not as well suited. Although
the goal may be achieved equally well in either case, there is
a fundamental difference in the ability of the agent under the
two scenarios. This difference may not be easily discernible
under the substantive or procedural rationality paradigms, but
it isclearly discernible under the intrinsic rationality paradigm.

In the following we first summarize the mathematical de-
velopment of satisficing decision theory. We next introduce a
concept of attitude, or disposition, for the agents, and develop
figures of merit for eval uating the equivocation experienced by
the decision maker or decision making system. We then present
a basic negotiation theorem and describe a simple negotiatory
process to converge to a rational compromise. We then finish
with an example and draw conclusions.

2. SATISFICING

VVon Neumann-M orgenstern game theory is based on avery so-
phisticated paradigm—global optimization. There are a num-
ber of basic problems, however, with optimization-based ap-

10ther researchers have appropriated this term to describe various notions
of constrained optimization. In this paper, werestrict our usage to be consistent
with Simon’s original concept.

proaches. First, sinceit iswell known that humans are not good
optimizers[1, 2, 5], a decision-making system that seeksto ap-
proximate human behavior may be unnecessarily constrained
by insisting on, and only on, optimal performance. Second, op-
timization is afixed, or absolute concept, in the sense that if an
option is not the best, then it is unacceptable. There cannot be
degrees of optimization. Third, optimization is, fundamentally,
anotion of exclusive self interest, and does not easily general-
izeto settings whereit isimportant to accommodate both group
and individua interests[4]. It isusually impossible to arrive at
ajoint solution that is simultaneously best for the group as a
whole and for each member of the group.

Our notion of satisficing, on the other hand, does not insist
upon optimal performance, and in return for this concession it
logically permits degrees of satisficing and the accommodation
of both group and individual interests. By adjusting the tradeoff
standards between cost and benefit, it may be possible to find a
joint solution that is simultaneously good enough for the group
and good enough for each member of the group. Thisis the
fundamental goal of negotiation.

Our approach is to employ the mathematics, but not the
usual semantics, of probability theory. As discussed in [9,10]
we may encode the preference rel ationships viamass functions,
which we term the selectability and rejectability functions. By
so doing, we are able to account for conditional preferences
(analogous to conditional probabilities) and to express both
joint (group) and margina (individual) preferences.

We formalize this procedure as follows. Let U; denote the
option set for the ith agent (we will assume U; isof finite cardi-
nality),i =1,... ,N,letU = Uy x - -- x Uy denotethe prod-
uct space of joint options, and let u = {uy,... ,un}, where
u; € U;, denote an option vector. Let pg(u) indicate the de-
gree to which the joint option u is successful in achieving a
group goal. Werequirethat } _; ps(u) = 1 and ps(u) > 0,
S0 ps is amass function, which we term the joint selectability
mass function. Also, let pr (u) indicate the degreeto which the
joint option u consumes resources, and requirethisto also bea
mass function, which we will term the joint rejectability mass
function. Next, let ps,: U; — [0,1] and pg,: U; — [0,1] be
marginal selectability and rejectability mass functions, respec-
tively, derived from ps and pr by appropriate summation. For
a discussion of how these joint and marginal mass functions
may be practically constructed, see[9, 10].

These mass functions define a dichotomy for each option,
that is, they partition the attributes of the option into two cat-
egories and provide a measure of support for each class of at-
tributes. We evaluate each dichotomy by comparing the se-
lectability (benefit) to the rejectability (cost) of each option. By
so doing, we define the jointly satisficing set

¥y ={u€ Uips(u) > bpr(u)},
and define the individually satisficing sets

Ei = {u € Uil ps;(u) > bpg,(v)},



i = 1,...,N. The boldness parameter, b, is a constant in
the interval [0, 1], which is nominally set to unity, but may be
decreased under special circumstances to be discussed below.
3, isthe set of dl joint options that are good enough for the
group, and each ¥ is the set of all individual options that are
good enough for the ith agent.

These sets provide the agent or group of agents with the
ability to make individual or group decisions. If theith individ-
ual agent isempowered to makeits own decision, it may choose
any member of ¢ . I the group as awholeis to make a collec-
tive decision, it may choose any member of 3 ,. These choices
may be random, or they may be made according to some tie-
breaking procedure.

3. EQUIVOCATION

Human decision makers often make qualitative assessments of
the difficulty, in terms of stress or tension, encountered in mak-
ing decisions. Even if such knowledge does not have a direct
bearing on their immediate decisions, an appreciation of the
difficulty involved in forming the decision is an important as-
pect of the decision-making experience. A decision maker need
not possess anthropomorphic qualities, however, to assess the
difficulty of making decisions, and we do not propose to endow
an artificial decision maker with some sort of ersatz anthropo-
morphic capability. Under our satisficing approach, however,
it is possible to evaluate attributes of the decision problem that
correspond more to its functionality and fitness than to its suc-
cess.

Are decisions easily made and implemented, or do they
tax the capabilities of the decision maker? Such assessments
are not atypical undertaking of classical decision theory. Max-
imizing expectations has no need to concern itself with issues
such as “difficulty.” Nevertheless, choices are not all of equal
difficulty.

By employing two utilities, rather than only one, we may
analyze them to ascertain the compatibility of the attributes of
the preferences. If they are compatible, in that optionsthat con-
serve resources also achieve the goal, then the decision maker
isin a fortunate situation of being content. If the preferences
are incompatible, in that options that achieve the goal also are
highly consuming of resources, then the decision maker is fun-
damentally conflicted. These attributes constitute attitudes, or
dispositions, of the decision maker.

The optimization literature is devoid of discussions con-
cerning the attitude or disposition of the decision maker who,
like the paradigm it employs, is assumed to be dispassionate. It
issimply doing what should be done under the auspices of indi-
vidual rationality, and attitudes or feelings, should they even ex-
ist (and they need not), are completely irrelevant. Furthermore,
to attribute anthropomorphic characteri sticsto a decision maker
would be seen by many as nothing more than a concocted story
linethat is of marginal valueif not completely misleading.

3.1. Attitude

It is fortunate if an option that conserves resources (low re-
jectability) also achieves the goa (high selectability)—in this
environment, a decision maker is content. Many interesting de-
cision problems, however, are such that actions taken in the
interest of achieving the goal are expensive, hazardous, or have
other undesirable side effects. A decision maker in this sit-
uation is conflicted. Contentment and conflict are basic dis-
positional states that serve as guides to the decision maker’'s
functionality. A situation requiring frequent high-conflict deci-
sionsindicatesthat the tasks are difficult for the decision maker.
Making high-conflict decisions, however, is not a measure of
how well the decision maker is performing—it may, in fact, be
making good, but costly, decisions. It isalso true, however, that
ahigh-conflict environment may result in poor performance be-
cause the decision maker is simply not powerful enough to deal
adequately with its environment. Such a situation might serve
as a trigger to prompt changes, such as activating additional
sensors, or otherwise seeking more information about the envi-
ronment. It may also trigger a learning mechanism to prompt
the decision maker to adapt itself better to the environment.

Since selectability and rejectability are probabilities, it
may be useful to appropriate some of the mathematical machin-
ery of probability theory to aid in interpreting these quantities.
One way to gain some insight is to examine the entropy of se-
lectability and rejectability.

Definition 1 The entropy of amassfunctionp is

H(p) ==Y p(u)log, p(u).
uelU
O

Entropy is usually employed in Shannon information the-
ory as ameasure of how much uncertainty (randomnessor dis-
order) is reduced, on average, as a result of conducting an ex-
periment governed by the mass function [3]. In our context,
however, we wish to provide entropic interpretations for se-
lectability and rejectability that are distinct from the usual prob-
abiligtic interpretation.

In assessing selectability, we consider expediency as anal-
ogous to uncertainty. To motivate this interpretation, suppose
u' isimplemented. If ps(u') = 1, thenlog, ps(u') ~ 0 which
is consistent with the notion that little reduction in expediency
occursif an option with high selectability isimplemented. Con-
versely, suppose ps(u') = 0, but is nevertheless implemented.
Then — log, ps(u') is large, indicating a great loss in expedi-
ency. The entropy of selectability is the average reduction in
expediency that obtains as result of making choices according
to ps.

To interpret the entropy of pr, we consider expense as
analogous to uncertainty. Suppose u' is implemented. If
pr(u') =~ 1, thenlog, pr(u') ~ 0 which is consistent with
the notion that little reduction in expense occursif a highly re-
jectable option is neverthelessimplemented. On the other hand,



if pr(u’) ~ 0 and u' is implemented, then —log, pr(u') is
large, indicating a great reduction in expense. The entropy of
rejectability is the average reduction in expense that obtains as
aresult of making choices accordingto p g.

Entropy is maximized by the uniform distribution; that is,
if p*(u) = L foralu € U, then H(p*) > H(p) for al mass
functions p over U, and has entropy H(p*) = log, n. A uni-
form ps generatesthe highest possible average expediency, and
a uniform pg would generate the highest possible average ex-
pense. Consequently, it is useful to take the uniform distribu-
tion as a baseline against which to assess the properties of ar-
bitrary mass functions. Let n be the cardindity of the action
space, U (assumed to be finite for this discussion).

Definition 2 If ps(u) = L (that is, selectability under ps is
equal to selectability under the uniform distribution), then the
option is success neutral. If the selectability mass function
is uniform, then the decision maker’s attitude will be success
neutral. |

Definition 3 If pr(u) = L (that is, rejectability under pg is
equal to rejectability under the uniform distribution), then the
option is conservation neutral. If the rejectability mass func-
tion is uniform, then the decision maker’s attitude will be con-
servation neutral. m|

Definition 4 If pg(u) > % (that is, selectability under pg is
greater than selectability under the uniform distribution), then
the option is attractive with respect to performance relative to
other options—u is expedient. |

Definition 5 If pr(u) > % (that is, rejectability under pp is
greater than rejectability under the uniform distribution), then
u IS unattractive with respect to cost or other penalty—u is ex-
pensive. O

The relationship between selectability and rejectability
permits the definition of four dispositional modes of the de-
cision maker with respect to each of its options. Let U be the
set of all possible options.

Definition 6 If u € U is both expedient and expensive, then
the decision maker will desire to reject, on the basis of cost,
an option that is suitable in terms of performance—it will be
ambivalent with respect to u. |

Definition 7 If u € U is both inexpedient (ps(u) < <) and
inexpensive (pr(u) < %), then the decision maker will be de-
sirous of accepting the option on the basis of cost, but will be
reluctant to do so because of poor performance. The decision
maker will be dubious with respect to u. O

Definition 8 If w € U is expedient and inexpensive, then
the decision maker is in the position of desiring to implement

an option that would yield good performance—a dispositional
mode of gratification with respect to u. O

Definition 9 If u € U isinexpedient and expensive, then the
decision maker will desire to reject, on the basis of cost, an
option that aso provides poor performance, and will thus bein
adispositional mode of relief with respect to u. m|

These four modes provide a qualitative measure of the way
the decision maker is matched to its task. Gratification and re-
lief are modes of contentment, while dubiety and ambivalence
are modes of conflict. Figure 1 illustrates these regions.
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Figure 1: Dispositional rnegions: G = gratification, A = ambiva
lence, D = dubiety, R = relief.

Figure 2 illustrates various cases for n = 2, atwo-dimen-
sional decision problem. In these plots, the diagonal line repre-
sents the unit ssimplex, and the ps and pg values are plotted as
vectorsthat lie on the simplex.
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(@ (b)

Figure 2: Attitude: (a) The decision maker is dubious with re-
spect to u; and ambivalent with respect to u». (b) The decision
maker is gratified with respect to u; and relieved with respect
to us.

3.2. Figuresof Merit

It would be useful to obtain formal expressionsto capture some
of the features of the qualitative analysis described in Section



3.1, where it is qualitatively indicated that as these distribu-
tions become more closely aligned, the decision maker be-
comes more ambivalent and dubious. We propose two mea-
suresthat are similar, but not identical.

Diversity One important feature of the selectability and re-
jectability functions, therefore, is their dissimilarity. To obtain
such a measure, we again appeal to the notion of entropy, and
apply the Kulback-L eibler distance measure.

Definition 10 The Kulback-Leibler (KL) distance measure
of two mass functions, say p; and p», is given by

n(w
- Lo Loy

uelU

p1 || p2

O

The KL distance measure is an indication of the relative
entropy of two mass functions. D(- || -) is not atrue metric; it
is not symmetric and does not obey the triangleinequality. It is,
however, non-negative, and it is easily seen that D(p; || p2) =
Oif andonly if p; (u) = p2(u) fordl u € U.

We may apply the KL distance measure to the problem of
ascertaining dissimilarity of the selectability and rejectability
functions by computing the KL distance between selectability
and rejectability.

Definition 11 Thediversity functional is:

Z pS IOgZ EZ; )

uwelU

ps | |pR

or, equivalently,

E:Ps

uwelU

D(ps|lpr) = u) logy pr(u) — H(ps).

O

Small values occur when the selectability and rejectability
functions are similar, indicating a condition of potential con-
flict. If they areidentical, then the decision maker isin a posi-
tion of wishing to reject precisely the optionsthat are in its best
interest—an unfortunate condition of total paralysis.

Diversity isinfinite if there exist options with nonzero se-
lectability and zero rejectability. Such options are free options,
since no cost independent of achieving the goal is incurred by
adopting them (analogy: coasting saves fuel, but may or may
not get you to your destination). Diversity is not a measure of
performance; that is, if one decision maker has a more diverse
sel ectability/rejectability pair than another, that is not an indica-
tion that it will perform better than the other. It does, however,
provide an assessment of the environment in which the decision
maker operates.

Tension Although the diversity functional provides insight
into the relationship between selectability and rejectability, it
does not afford a convenient comparison in the case where the
decision maker is neutral with respect to either selectability or
rejectability. To develop such a measure, it is convenient to
re-normalize the selectability and rejectability functions. Con-
sider first the case where ps and pr are mass functions and U
isfinite. Let

pPs = [ps(u1),...,ps(un)]

Pr = [pr(w),... ,pr(un)]
be selectability and rejectability vectors, and let ¢ =
[L,..., 1] denotethe uniform massfunction vector, wheren is

the cardinality of U. Although these vectors are unit-length un-
der the L, norm, they are not of unit length under the L 5 norm.
It will be convenient to normalize these vectors with respect to

L,. Let |ps| = y/pspL, with similar definitions for |p r| and
|ue|. The L, normalized mass function vectors will be denoted
by ps = %, and similarly for pg and p.

We express the similarity between pg and pg through the
inner product of the corresponding unit vectors, yielding the
expression pspk. This quantity will be unity when ps = pg,
and will decrease as the two mass functions tend toward be-
coming orthogonal, and thus captures some of the properties
we desireto model. If we normalize by the product of the pro-
jectionsof ps and p g onto the uniform distribution, wetend to
scale up the inner product as the mass function vectors become
distanced from the uniform distribution.

Definition 12 Thetension functional is
PsPh

T(ps|lpr) = —="=
(psllpr) PsaTpraT’

which simplifiesinto the convenient form:

T(psllpr) = npsph =n Y _ ps(ui)pr(us).

i=1
|
Clearly, T'(psl||lpr) is positive and bounded by the di-
mension, n. |If either the selectability or rejectability is uni-

form, then the tension function equals unity. If the rejectability
function is uniform, then the decision maker is rejectability-
neutral. If the selectability is uniform, then the decision maker
is selectability-neutral. If T'(ps|lpr) > 1, then the projection
of selectability onto rejectability is significant, and options that
are desirable are also costly. We may interpret this as a state of
conflict. On the other hand, f T'(ps||pr) < 1, then the projec-
tion of selectability onto rejectability is small, and the decision
maker isin a state of contentment.

A decision maker operating in a contented environment is
well-tuned to its task—decisions that possess high rejectability
al so possess low selectability. Such a decision maker should be



expected to achieveits goalswith ease, and be adequatein most
situations. A conservation-neutral decision maker will function
much as would a conventional Bayesian decision-maker. If itis
success-neutral, it will function much like aminimax decision-
maker. If the decision maker is both conservation-neutral and
success-heutral, it is completely indifferent to the outcome, and
thereis little point in even attempting to make a decision other
than a purely random guess.

4. NEGOTIATION

Negotiation under the individual rationality paradigm forbids
any individual participant, as well as any potential coalition,
from settling for a decision that is below its security, or mini-
max, level. Thisis avery strong restriction, which can lead to
an empty core and the lack of a rational basis for negotiation.
There are many ways to modify this solution concept to jus-
tify solutions not in the core, such as accounting for bargaining
power based on what a participant calculates it contributes to
a coalition by joining it (e.g., the Shapley value), or forming
coalitions on the basis of no player having ajustified objection
against any other member of the coalition (e.g., the bargaining
set). Also, it is certainly possible to invoke various voting or
auctioning protocols to address this problem. We do not criti-
cize the rationale behind these refinements to the basic theory,
or the various extra-game-theoretical considerations that may
govern the formation of coalitions, such as friendship, habits,
fairness, etc. We simply point out that to achieve a reasonable
solution it may be necessary to go beyond the strict notion of
maximizing individual expectations and employ ancillary as-
sumptions that temper the attitude and behavior of the decision
makers

Satisficing negotiation, however, permits controlled de-
grees of atruism. If agents are willing to lower their standards,
as defined by the boldness, b, they may obtain a sati sficing com-
promise, where ajoint decision is obtained that is good enough
for the group as a whole and good enough for each member of
the group. This potential result is guaranteed by the following
theorem.

Theorem 1 (The negotiation theorem.) If u; is individually
satisficing for the ith agent, that is, u; € ¢, then it must be the
ith element of some jointly satisficing vector u € X,.

Proof We will establish the contrapositive, namely, that if u;
is not the ith element of any u € X, thenu; ¢ . With-
out loss of generality, let i = 1. By hypothesis, ps(u;,v) <
bpr(ui,v) fordl v. € Us x -+ x Un, 0 ps,(u1) =
Yoops(ui,v) < b)Y, pr(ui,v) = bpg,(u1), hence u; ¢
3. O

The content of the negotiation theoremisthat, under intrin-
sic satisficing, no oneis ever completely frozen out of a deal—
every decision maker has, fromits own perspective, aseat at the

negotiating table. Thisis perhaps the weakest condition under
which negotiations are possible.

A decision maker possessing a modest degree of altruism
would bewilling to undergo some degree of self-sacrificein the
interest of others. Such a decision maker may be viewed as an
enlightened liberal; that is, one who is intent upon pursuing
its own self interest but gives some deference to the interests of
thegroup in general. Such adecision maker would bewilling to
lower its standards, at least somewhat and in a controlled way,
if doing so would be of great benefit to others or to the groupin
general.

The natural way for a decision maker to express a lower-
ing of its standards is to decrease its boldness. Nominaly, we
may set b;, the boldness of theith agent, to unity, which reflects
equal weighting of the desire for success and the desire to con-
serve resources. By decreasing b;, the agent lowers its standard
for success relative to resource consumption, and thereby in-
creases the size of its satisficing set. Asb; — 0 thestandard is
lowered to nothing, and eventually every option is satisficing.
Consequently, if all decision makers are willing to reduce their
standards sufficiently, a compromise can be achieved.

Figure 3 illustrates this negotiatory process. The amount
by which b; must be reduced below unity is a measure of the
degree of compromising needed to reach a mutually acceptable
solution. As with tension and diversity, however, this degree
of compromising is not a measure of performance, but it is a
useful figure of merit for assessing the degree of difficulty that
is associated with the negotiatory process.

Step 1: Agentiforms £} and X ,i=1,...,N; initial-
ize with b, = 1, b = min{bl, . ,bN}.

Step 2: Agent i forms its compromise set by eliminating
all option vectors for which its component is not
individually satisficing, resulting in C; = {u €
b, i ui € 54, ).

Step 3: Broadcast C; and b; to all other participants, re-
ceiving similar information from them.

Step 4: Form the satisficing imputation set, N =
NZ,Cj. If N = 0, then decrement b;, j =
1,..., N, and repeat previous steps until N # 0.

Step 5: Agent i implements the ith component of the ra-
tional compromise

u® = arg max PSrSw (W
ueN DR,...Rn (11)

Figure 3: The Enlightened Liberals negotiation algorithm.

Thisleadsto atheory of social behavior thanisvery differ-
ent from standard NV -person von Neumann-Morgenstern game
theory. Whereas, under conventional theory, additional crite-
ria may be required to foster successful negotiations, the sat-



isficing concept builds controlled degrees of compromise into
the decision-making procedure. If an agent reaches its limit
of compromise before negotiations are successful, it may be
forced to declare an impasse, rather than to sacrifice its stan-
dards any further.

5. RESOURCE SHARING

The following simple example illustrates the fundamental dif-
ferences between substantive and intrinsic rationality. Suppose
afactory operates N processing stations that function indepen-
dently of each other, except that, if their power requirements
exceed a fixed threshold, they must draw auxiliary power from
a common source. Unfortunately, thereareonly N — 1 tapsto
this auxiliary source, so one of the stations must operate with-
out that extra benefit. Although each station isinterested in its
individual welfare, it is also interested in the overall welfare of
the factory and is not opposed to making a reasonable compro-
mise in the interest of overall corporate success.

Let U denote the set of auxiliary power levelsthat are fea-
siblefor each X; totap, andlet f;: U — [0, 00) be an objective
function for X;; that is, the larger f;, the more effectively X;
achieves its goal. X;'s choice is tempered, however, by the
total cost of power, as governed by an anti-objective function,
gi: U — [0, 00), such that the smaller g;, thelessthe cost. Work
cannot begin until all players agree on a way to apportion the
auxiliary power. Table 1 displaysthese quantitiesfor asituation
involving three decision makers.

U H]l ¢ f2] 9 f3 | 93
000501001010 025 |10
1.0 200 | 20 || 200 | 3.0 || 0.50 | 5.0
201 3.00 | 40| 3.00 | 60| 100 | 5.0
301 400 |50 | 400 |90 | 200 |50

Table 1. The objective functions for the Resource Sharing
game.

A standard approach under substantive rationality is to
view this as a cooperative game. The payoffs may be obtained
by combining the two objective functions, yielding individual
payoff functions of, say, the form

o = {1 if u; > 0Vj
(U1, U2,U3) = Oézfl(uz)_ﬂlgl(ul) OtherWISE ’

i =1,2,3, whereqa;, §;, and u are chosen to ensure compatible
units. To achieve this compatibility, we normalize f; and g; to
unity by setting a;; = m and 3; = m

The Pareto solutionisup = {0, 1,3}, but, with an attitude
governed by expected utility maximization, X ; hasnoincentive
to agree to this apportionment. Thus, to solve this problem, a
negotiation protocol must be invoked. Of the various protocols

that are possible, the only one that does not require assumptions

additional to that of self-interested expectations maximization
isthe core. Unfortunately, the core is empty for this game. Es-
sentially, this is because only two decision makers can share
in the auxiliary power source, effectively disenfranchising the
third decision maker. This situation potentially leads to an un-
ending round of recontracting, where participants continually
make offers and counter offers in a fruitless attempt for all to
maximize their expectations.

Let us now view the decision makers in their true charac-
ter as enlightened liberals who are willing to accept solutions
that are serviceably good enough for both the group and the in-
dividuals. From the point of view of the group, an option is
satisficing the joint selectability exceeds the joint rejectability
scaled by boldness. We define joint rejectability as the normal-
ized product of the individual costs functions, namely,

PR.1R>R3 (U1,U2,U3) X g1 (U1)92(U2)g3(u3),

where “oc” means the function has been normalized to sum to
unity. To compute the joint selectability, we note that, under
the constraints of the problem, only two of the agents may use
the auxiliary power source. We may express this constraint by
defining the joint selectability function as

ifuell
otherwise

u u u
DS, 5255 (U1, U2, u3) 0<{ gsl( 1)psa (uz)pss (us)

where IT is the set of al triplesu = {u1,us,uz} such that
exactly one of the entries is zero. The individual rejectability
and selectability marginal mass functions are obtained by sum-
ming over these joint mass functions according to the rules of
probability theory.

The enlightened liberals agorithm vyields, for o >
0.8, an empty sdatisficing imputation set. But, when b is
decremented to 0.8, the sdtisficing imputation set is N =
{{0,1,3},{0,2,3},{0,3,3}} and the rational compromise is
u* = {0, 1,3} which, coincidentally, is the Pareto optimal so-
lution. It is not surprising that, at unity boldness, there are no
optionsthat are simultaneously jointly and individually satisfic-
ing for all participants, sincethereisaconflict of interest (recall
that the coreis empty). But, if each individual adopts the point
of view offered by intrinsic rationality, it gradually lowers its
persona standards to a point where it is willing to be content
with reduced benefit, provided its costs are reduced commen-
surately, in the interest of the group achieving a collective goal .
The amount b must be reduced to reach ajointly satisficing so-
lution is an indication of the difficulty experienced by the par-
ticipants as they attempt to resolve their conflicts. Reducing
boldnessis a gradual mechanism for decision makers to subor-
dinate individual interest to group interest. This mechanismis
very natural in the regime of making acceptabletradeoffs, but is
quite foreign to the concept of maximizing expectations (“you
get what you pay for” versus “nothing but the best”).

The diversity and tension values for this decision problem
are given in Table 2. We interpret these values as follows.



Agent || Diversity | Tension
X1 0.55 0.93
Xo 0.03 1.30
X 1.21 0.73

Group 2.85 0.51

Table 2: Diversity and Tension for Resource Sharing Game.

Group diversity is high and group tension is low, indicating
that, as a group, the system is fairly well suited for its envi-
ronment, and that the system is powerful enough to make good
decisions. Individualy, X- has the lowest diversity and the
highest tension. Thissituation isreflected in the structure of N,
wherewe seethat X» has several choicesthat are good enough,
but is either dubious or ambivalent about al of them. Thus, X 5
experiences the most conflict in making decisions. X 3 is quite
content with its decision and so is X;. The fact that X is not
conflicted as measured by diversity and tenseness may appear
somewhat contradictory, sinceit is X; who ends up sacrificing
for the benefit of the group. But these figures of merit are not
intended to be metrics of performance, only of the intellectual

power of the decision maker, in terms of its conflict between
selectability and rejectability.

6. CONCLUSION

An intelligent agent is, first and foremost, a decision maker,
regardless of the problem context, the way knowledge is rep-
resented, or the criteria used to define performance. One way
to assess the functionality of the agent is to provide it with a
means to evaluate introspectively its own fitness, or suitability,
to function in its environment. Satisficing decision theory pro-
vides this capability. Although the figures of merit associated
with these fitness eval uations are not measures of performance,
they are useful measures of the innate intellectual (decision-
making) power of the agent.
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Abstract

Probably the most widespread and significant existing
“performance metric for intelligent systems” isthe dollar pre-
miums that employers are willing to pay to recruit and retain
more intelligent human employees compared to lessintelli-
gent ones. This paper examines some of the aspects driving
this economic metric in the search for anal ogies that may be
useful in establishing performance metrics for constructed
intelligent systems. Aspects considered include Language
Understanding & Capacity to Act, Goal-Directedness, Auton-
omy and Unpredictability, Information, Uncertainty, World
Models, and Self-Models and Self Awareness. The paper
concludes with a discussion of performance metrics for
human intelligence and a brief prospectus for the role of eco-
nomic considerations in assessing the Vector of Intelligence

K eywor ds:. economic value, intelligence

1. Introduction

Much of the discussion leading up to the conference on
“Performance Metrics for Intelligent Systems” focuses on an
“inner” view of intelligent performance, or rather of intelli-
genceitself. Thisinner view takestwo very different forms:
components like memory or MIPS that must be present inside
an intelligent system, and metaphysical questions about the
“inner life” of an intelligent system, such as questions of
CONSCi OUSNESS.

Rather than try directly to add to thisinteresting and
valuable train of thought, this paper approaches the subject of
performance metrics for intelligent systems from an external
perspective. The question under consideration hersis“What
is the economic value of intelligence?’ Most of the discus-
sion will concern the market value of human intelligence, in
order to look for useful analogies for understanding and
measuring the economic value of intelligence in constructed
systems.

Individuals treasure intelligence in themselves and their
friends and family for a variety of reasons, most of which lead
rapidly into the spiritual or metaphysical realm, or, if you
prefer, into the most complex challenges of sociobiology.
Either way, creating a“performance metric” for intelligence
in this context seems neither feasible nor especially desirable.

On the other hand, consider the owners of a medium-
sized business, who need to hire a number of employeesto
perform various tasks in the firm. Why should the owners
pay a higher salary and go through a more difficult and
expensive recruitment process to hire amore intelligent
employee when they can get alessintelligent employee with
the same training and experience more cheaply? To the
extent we can give a quantitative answer to this question, the
dollar premium a businessiswilling to pay for intelligenceis
afinancial “performance metric for intelligent employees”
within the context of thejob at hand. Understanding how
these dollar premiums arise in avariety of employment situa-
tions can give important clues on how to put a value or “met-
ric” on the performance of intelligent machines.

There are three distinguishable ways in which a smarter
employee can be worth more money to a business than a stu-
pid one with equivalent training and experience. These are;
doing what | say, doing what | want, and doing what | need.

2. Language Understanding & Capacity to

Act

At the most fundamental level, “do what | say,” anintel-
ligent laborer can follow instructions better than a stupid
laborer. Smart employees can follow instructions that are
more complex, less detailed, and require less time and effort
(in other words, less money) to prepare. Since they are less
apt to misunderstand instructions, they require less money to
be spent on supervising them than is the case for lessintelli-
gent employees with equal motivation. For constructed sys-
tems, the equivalent is an expressive command language; one
that isthe “natural language” for describing the task at hand,
whether it resembles a spoken human language, a specialized
technical language, or agraphical interface. Allied with this,
of course, isthe capacity to actually carry out the instructions,
which some have referred to as the “body” as opposed to the
“mind” of the intelligent constructed system.

3. Goal-Directedness

It is possible to view the next level, "do what | want," as
simply an elaboration of the ability of smarter employeesto
follow instructions that are less detailed. However, busi-
nesses look hard for intelligent skilled craftsmen who can be
told what goal's to accomplish without needing to be told how
to do so, and reward them with higher wages and better



treatment. A major topic of discussion has been the role of
goal - directednessinintelligent systems. In the world of
human employment, a laborer (first level) is given instruc-
tions about how to do a job; the goal may be implicit in the
instructions but is not an integral part of them from the
laborer's point of view. A craftsman (second level), on the
other hand, takes the goals provided by the employer and car-
ries them out without further instruction. To do this, the
craftsman needs experience and training, but also puts more
intelligence into the work than the laborer does. *

Over time, ajob may become more routinized, so that
what originally required highly intelligent goal-seeking
behavior later requires only the following of rote instructions.
This can occur at either the structural level asthe instructions
are written down for others, or within an individual aslong
experience with ajob eventually allows it to be done “without
thinking.” The equivalent to this processin the area of con-
structed systems would be the replacement of complex, “intel-
ligent” processes of sophisticated search and behavior
generation with stereotyped program modules or hardware
gadgets, reducing the “intelligence” used by a constructed
system while maintaining or even enhancing its performance.

4. Autonomy and Unpredictability

At both of the first two levels, management wants behav-
ior of the employee to be predictable. Intelligence means
autonomy in the sense that, given equivalent training and
motivation, the intelligent employee does what is expected of
him or her without close supervision while the stupider
employee in the same job needs to be watched all the time.
However, autonomy in this context is almost the opposite of
creativity, spontaneity, or unpredictability; it is the stupid
employee, not the smart one, who comes up with the most
surprises.

Itisonly at the highest level, “do what | need,” that
businesses value unpredictability in their employees and con-
sultants. Even here, there are two degrees of unpredictability.
Most of the time a person or company seeks advice on matters
of law, engineering, medicine, or other fields, the advice has
no “information” value if the one requesting it already knew
the answer; nevertheless, routine advice needsto bein line
with professional standards. For example, though | do not
want to be able to predict what my personal physicianis
going to tell me, | want it to be essentially the same as what
any competent physician would say given the same knowl-
edge about me; in other words, | want my physician's behav-
ior to be essentially predictable by other physicians. Itisonly

if | am suffering from an extremely serious disease, or if | am
knowingly participating in aclinical experiment, that | want
my physician to do something that will surprise the medical
profession!

5. Information

Some of the discussion about performance metrics for
intelligent systems has debated the applicability of entropy or
other aspects of information theory to measuring intelligence.
Fundamentally, “Information” implies informing somebody
about something they didn’t already know. From this point
of view, an employer wants a laborer’ s work to provide no
new information output at all, but a more intelligent laborer
requires less information input that an unintelligent one. A
craftsman working at the second level of “doing what | want”
takes compact information about goals rather than lengthy
information about procedures; the craftsman’swork in sense
generates “information” to the employer about the methods
used, but thisisinformation that normally is of no great
interest to the employer. It isonly at the highest level, that of
the professional employee, that the employer is concerned
about receiving information output from the employee.

Information  |Information
I nput Output
Laborer |[Dowhat | say |High, procedura |lIdeally none
Craftss  |Dowhat | want |Low, Uninteresting
man goal-oriented
Profess [Dowhat | need |Various Essential
sional

6. Uncertainty

The more uncertain the job environment is, the more
valuable an intelligent employee becomes. Procedural
instructions about an uncertain job environment must become
acomplex collection of “ifs’ and branches, compared to a
more linear set of instructions for ajob in aless uncertain
environment. Businesses have to pay more for employees
intelligent enough to follow such complex instructions than
they do for employees whose jobs do not contain much
uncertainty.

For sufficiently high levels of uncertainty in the job envi-
ronment, management finds it unprofitable to prepare proce-
dural instructionsin aform that even the smartest laborer can
follow. Instead, it is more economical to hire craftsmen who
only need to be told the employer’s goals and essentially | eft
to implement those goals according to their own skills and

! Note that my focus here is on the degree of intelligence demanded by the job, not on the intelligence possessed by the human
being doing it. Job demands place only a lower bound on the worker'sintelligence. Nevertheless, the more intelligence the job
demands, the more the performance of an intelligent employee will overshadow that of a less intelligent one.



intelligence. The fundamental problem with the “ Chinese
Room” thought experiment isthat, while it might in principle
be possible to prepare and index a set of stimulus-response
instructions so extensive as to allow the occupant of the room
to carry on a conversation in Chinese without any knowledge
of thelanguage, it isin fact such an immense task that it
would be far cheaper and easier to build a machine that actu-
ally understood Chinese (and easier till to hire a human who
understands Chinese to sit in the room!).

At the highest levels of uncertainty (or extreme complex-
ity, which as Zadeh points out has many of the same effects)
management can no longer be sure what goals are feasible or
profitable, and so seeks expensive and potentially surprising
guidance from professional's, and perhaps some day from con-
structed systems that produce “useful surprises’ at a profes-
sional level.

7. World Models

It isvery rare for an employer to ask about an employee’s
internal model of the world or to pay a higher salary on
account of it. Laborers are paid to follow instructions intelli-
gently in the real world, and craftsmen are paid to ply their
trades intelligently in the real world. Whether or not they use
an internal model of the world to do so is of no economic
importance except asit is reflected, at one or more removes,
in their performance.

Professionals are paid to give “useful surprises’ to their
employersor clients. Thisinformation (and actions informed
by it) generally have to do with the real world, though at
times professionals may be asked for opinions about hypo-
thetical situations. Even then, usually it isirrelevant whether
the answer comes from stored knowledge, experimentation,
or the exercise of a simulation-like model in the professional
expert’shead. The exception iswhen the professional is
explicitly asked to provide amodel, but in that case the model
isno longer an internal one, but an external analogy, flow-
chart, or computer simulation.

8. Self-Models and Self Awareness

Certainly, al of afirm’s (human) employees have a self-
model, a self-awareness, a consciousness. But only in afew
“helping professions’ such as psychiatry or the clergy isan
abov-average endowment in this area considered an advan-
tage to job performance. Employers value some limited facets
related to self-awareness such as taking pride in one's work
and being safety-conscious, but outstanding self-
consciousness and self-absorption are not considered signs of
outstandingly valuable intelligence by employers. Thus, with
regard to constructed systems, it might be an economically
important goal to build machines that “care” about doing a
good job and know how to take care of themselves and those
around them. But we should not insist on arobotic Mother

Teresa; it would be a magnificent achievement to create a
working system that was as caring and careful as a seeing-eye
dog.

9. Performance Metrics

Unlike constructed systems, human employees cannot be
opened up to inspect their components. Thus, employersin
search of intelligent employees rely on avariety of bench-
mark tasks. Occasionally, they may use a benchmark task
that triesto screen out the effects of knowledge to focus on
pureintelligence -- examples include | Q tests and program-
mer aptitude tests. However, since job performanceis more
important than what mix of knowledge, intelligence, and
other endowments it arises from, most benchmark tasks
measure performance without much concern about the mix.
The most common benchmark task is performance on similar
jobsin the past.

Another interesting benchmark is formal education.
Completing any program of study implies an ensemble of
intelligence, knowledge, and skills for learning, writing, and
simply sticking to atask. The education most valued by
employers adds to this a body of knowledge relevant to the
job. However, for complex and unpredictable environments,
it may not be possible to specify in advance what body of
knowledge will be required. In such a case, a broad “general
education” demonstrates that a person has an advanced abil-
ity, refined by varied practice, to learn whatever isrequired in
anew situation. With respect to constructed systems, a
design team that hones and demonstrates their product’ s abil-
ity to learn and excel in awide variety of problem environ-
ments, including artificial ones aswell asreal ones, can
command a higher price for their machines than a design
team that only trains their system on what is“relevant” to its
expected tasks, at least from customers whose jobs are at the
high end of uncertainty or complexity.

Performance metrics for intelligent systems based on
board games like chess and backgammon or parlour games
like the Turing test can be very useful in addressing philo-
sophical questions about what it means to be intelligent, and
technologica questions about how to implement it, but they
are of little direct economic interest. In particular, to passthe
Turing test in ajob application context, an intelligent system
would have to refrain from showing any levels of ability not
common among humans, and also to demand the same levels
of salary and benefits as a human. What is needed, instead, is
a set of benchmark tasks, probably job-specific, with one or
more of the following characteristics:

e Ingtructions are so complicated that it is
more profitable to seek an intelligent
laborer system that understands them, than
to seek an unintelligent “ Chinese room”



type system to follow the instructions with-
out understanding.

The environment is so complicated and
uncertain that it is more profitable to seek
an intelligent craftsman system that accepts
exogenous goals and carries them out
according to its own skills and intelligence,
rather than to seek an unintelligent system
that ssimply follows instructions.

The situation is so fuzzy that it is more
profitable to seek an intelligent professional
system to determine what goals are appro-
priate (presumably given exogenous meta-
goals) and do surprising things for the
benefit of the organization, rather than to
seek an unintelligent system that simply
and predictably carries out exogenous goals

then the one with the best cost/benefit ratio, not necessarily
the smartest one, will be chosen.

10.Economics and the Vector of

Intelligence

The “white paper” for the 2000 Conference on Perform-
ance Metrics for Intelligent Systems lists 25 potential coordi-
nates for a possible Vector of Intelligence. A mgjor challenge
isto find ways to systematically quantify or otherwise specify
the values of these “ coordinates.” Without detracting from
the usefulness of methods oriented toward philosophy of
mind, toward control engineering, or toward academic com-
puter science, let me propose an economic approach to meas-
uring each of the 25 coordinates summarized in the following
table. In this economic approach, the challenge would be to
estimate the derivatives of system cost/benefit ratio in a
benchmark problem to “memory tempora depth,” “number of
objects that can be stored,” ... et cetera.  The second deriva-

To be useful, an intelligent constructed system must pro-
vide a better cost/benefit ratio than any combination of
human being(s) and unintelligent constructed system(s). If
more than one intelligent constructed system meets this test,

tiveisasimportant as the first since most or all of these coor-
dinates are subject to diminishing or even negative returns.

Twenty-Five Potential Coordinatesfor the Vector of Intelligence (from the White Paper)

(8) memory temporal depth

(b) number of objects that can be stored

(c) number of levels of granularity in the system of representation

(d) the vicinity of associative links taken in account during reasoning of a situation, or

(e) the density of associative links

(f) the vicinity of the object in which the linkages are assigned and stored (associative depth)

(g) the diameter of associations ball (circle)

(h) the ability to assign the optimum depth of associations

(i) the horizon of planning at each level of resolution

(j) the horizon of extrapolation at alevel of resolution

(k) the response time

(1) the size of the spatial scope of attention

(m) the depth of details taken in account during the processes of recognition at a single level of resolution

(n) the number of levels of resolution that should be taken into account during the processes of recognition

(o) the ratio between the scales of adjacent and consecutive levels of resolution

(p) the size of the scope in the most rough scale
and the minimum distinguishable unit in the most accurate (high resolution) scale

(g) an ability of problem solving intelligence to adjust its multi-scale organization to the hereditary
hierarchy of the system,

(r) dimensionality of the problem (the number of variables to be taken in account)

(s) accuracy of the variables

(t) coherence of the representation constructed upon these variables

(u) limit on the quantity of texts available for the problem solver for extracting description of the system 20

(v) frequency of sampling and the dimensionality of the vector of sampling

(w) cost-functions (cost-functional s)

(x) constraints upon all parameters

(v) cost-function of solvina the problem
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Abstract. In this paper we develop a computational framework for the measurement of
different factors or abilities usually found in intelligent behaviours. For this, we first develop
a scale for measuring the complexity of an instance of a problem, depending on the descrip-
tional complexity (Levin LT variant) of the ‘explanation’ of the answer to the problem. We
centre on the establishment of either deductive and inductive abilities, and we show that their
evaluation settings are special cases of the general framework. Some classical dependencies
between them are shown and a way to separate these dependencies is developed. Finally,
some variants of the previous factors and other possible ones to be taken into account are
discussed. In the end, the application of these measurements for the evaluation of AT progress
is discussed.

1 Introduction

Are Al systems of today more intelligent than those of 40 years ago? Probably the answer is a clear
ves, at least for some of the current systems. However, another different question is ‘How much
more intelligent?’, and, even more, in which aspects are they more intelligent?

In this paper we investigate a framework for the evaluation of such a progress in different
factors, extending in a natural way the work endeavoured in [12] and [11], specific for only some
inductive factors. For such an extension, the main aim should be to develop the less number of
factors as possible, by proposing general factors instead of specific ones. Moreover, the framework
would allow to studying their theoretical correlations, and reducing, when possible, a factor to
another. This leads finally to a group of tests that can be adapted and implemented for measuring
different abilities of Al systems.

First of all, we must ascertain three problems for any evaluation of the ability of solving a
problem: to give a general scale of a complexity of the problem, to settle the unquestionability of
the solution to the problem and to establish a way to know whether the subject has arrived to the
solution.

Computational complexity scales problems according to the time different kinds of machines
require to solve them in the general case by using the optimal algorithm possible. However, most
problems of interest in AT are NP-complete. But, remarkably, some instances of NP-complete prob-
lems are easier than instances of polynomial problems. This assertion seems to be contradictory,
since any instance has an algorithm to solve that instance in linear or even constant time (the
program “if the input is x print the solution ”), so there is apparently no reason for stating that
an instance can be easier than another. This has been shown to be false up to an extent, because
for some problems it is better (shorter) to give a more general solution than the specific solution
for an instance of the problem. This has been formalised under the notion of “instance complexity”
(see e.g. [16]), which gives the shortest solution to an instance of a problem provided it does not
give a contradictory solution for other instances of the same problem.

However, instance complexity is only of interest for large instances of a considerable descrip-
tional complexity (or for sets of instances). Moreover, the difficulty of the problem is not usually
related to the descriptional complexity of the solution. For instance, the descriptional complexity
of the answers given by a theorem prover (an accepter) are very short, namely one bit to say



‘ves’ or ‘no’. In the same way, the hardness of a prediction problem cannot be measured by the
descriptional complexity of the element predicted, but rather by the complexity of the reason why
the element has been predicted. The idea is then to measure the descriptional complexity of the
‘justification’ or ‘explanation’ of the solution. Consequently, any cognitive skill can be measured
within this framework provided that problem and solution can be formalised computationally.
The paper is organised as follows. After Section 2, where some notation is introduced, Section 3
gives a general formula of the hardness of the instance of a problem, by clarifying how to generalise
the concept of ‘explanation’ of a solution to a problem. Section 4 addresses the issue of specialising it
for deductive abilities and discusses their measurement. Section 5 does the same thing for inductive
abilities, but recognising that it is necessary to solve the unquestionability problem. Section 6 deals
with their dependencies and the possibility of taking other factors into account. Section 7 discusses
the applications of these measurements, especially for the evaluation of automated reasoning and
machine learning systems. Section 8 closes the paper with the results and open problems.

2 Preliminaries

Let us choose any finite alphabet X composed of symbols (if not specified, X' = {0,1}). A string
or object is any element from X, with o being the composition operator, usually omitted. By
(a, by we denote a standard recursive bijective encoding of a and b, such that there is a one-to-one
correspondence between (a,b) and each pair (a,b). Note that this usually takes more bits than acb.
The empty string is denoted by e. The term I(x) denotes the length or size of = in bits and logn
will always denote the binary logarithm of n.

The complexity of an object can be measured in many ways, one of them being its degree
of randomness [14], which turns out to be equal to the shortest description of it. Descriptional
Complexity, Algorithmic Complexity or Kolmogorov Complexity was independently introduced by
Solomonoff, Kolmogorov and Chaitin to formalise this idea, and it has been gradually recognised
as a key issue in statistics, computer science, Al and cognitive science [16][6)].

The Kolmogorov Complexity of an object, defined as the shortest description for it, usually
denoted by C (plain complexity) or K (prefix-free complexity) turns out to be not computable in
general, due to the halting problem. One solution for this is to incorporate time in the definition
of Kolmogorov Complexity. The most appropriate way to weight space and time execution of a
program, the formula LT3(p,) = l(ps) + log 78(ps), where 7 is the number of steps the machine 3
has taken until x is printed by p,, was introduced by Levin in the seventies (see e.g. [15]). Intuitively,
every algorithm must invest some effort either in time or demanding/essaying new information,
in a relation which approximates the function LT'. The corresponding complexity, denoted by Kt
(see e.g. [16]) is a very practical alternative to K.

3 Problem Complexity by Its Explanation Complexity

Consider a problem instance 7 as a tuple (S, C, I, A, ¢) where S is the context or working system
where the problem can be established, C' is a Boolean function which represents a (syntactical)
validity criterion, I is the presentation of the instance, A; is the answer and ¢ is a (semantical)
verifier'. The general problem is denoted by 7(-) as the tuple (S, C, ¢).

We say that F is an explanation for the problem instance 7 iff E is valid, i.e. C((S, I, E)) = true,
and E is a means to obtain the solution, i.e., p({S,I, E}) = A;.

From here, it is easy to adapt the definition of K¢ to measure the hardness of a problem.
Namely, the hardness of a problem instance 7 (S, C, I, A, ¢} is then defined as:

H(m) =min{ LT(E|{(S,C,I)) : FEis an explanation for 7} (1)

! Both C and ¢ could be joined in one function. We have preferred to separate them, because later it will
be useful to distinguish between both parts of a correct solution, in order to establish purer factors.



For instance, the hardness of a search problem is usually estimated by the size of the search
space. If the search problem is complex, it is necessary to say which branches have been selected in
order to arrive to the solution, or either a long time is necessary to explore (and make backtracking)
to the misleading ones. It is the function LT which finds a compromise between the information
which is needed to guide the search and the logarithm of the time that is also needed to essay all
the branches. On the other hand, if the search problem is linear (one possible branch), it is very
easier to describe the problem (just follow the rules in the only possible way). However, for very
long derivations, the inclusion of time can make hardness high too.

For the evaluation of a subject’s ability of solving a kind of problem 7(-) it is necessary to
generate a set of instances of that problem of different hardness. In order to scale the instances
more properly, we introduce the concept of k-solvability. An instance of a problem 7« = (S, C, I, A, ¢)
is k-solvable iff k is the least positive integer number such that:

H(r) < k- logl(I) (2)

The use of log I(I) is justified by the fact that, once the general problem is known, each instance
must be ‘read’ an this takes at least I(I) steps.

Once given a general scale of a complexity of the problem, it is then easy to make a test
from the previous definition, provided that the unquestionability of the solution to the problem
is clear. Unquestionability can only be addressed depending on the kind of problem (we will see
this for deductive abilities and especially for inductive abilities in the following sections). Finally,
there is no way to know whether the subject has arrived to the solution if the explanation is not
given (and usually the explanation is difficult to check or the subject may not be able to express
the explanation in a comprehensible form). For instance, the subject may have given the right
solution but maybe due to wrong derivations. Fortunately, in the case of multiple solutions, this
situation will be discardable in the global reckoning of the test. In the case of few solutions, such as
‘ves’/‘no’, it is then necessary to penalise the errors by using some formula that takes into account
the possibility of guessing the right answer ‘by error’.

Another question is the time limit for making the test. This would highly depend on the factor
to be measured, and whether there is a special interest on evaluating the ability to solve a given
problem or the ability to solve it quickly. The selection of the time limit and the evaluation of the
score according to it could be very interesting for evaluating resource-bounded rational systems.

Finally, we have not considered the possibility of multiple correct explanations for the same
solution, which would suggest a modification of (1). Consider the situation of the best explanation
with LT = n, but several other explanations of LT = n+ 1. Intuitively, the existence of these other
explanations also affects the easiness of the solution. However, this is very difficult to evaluate
in practice because there are always infinite slight variations of the best explanation (void steps,
redundancies, etc.), so the previous situation is extremely frequent (if not inevitable). It is then
assumed that for every k:

card{ E: LT(E) = kand C((S,I,E)) = true and ¢((S, I, E)) = A; } <<
card{ E:LT(E)=Fkand C({(S,I, E)) = true } (3)
In other words, we assume that the proportion of valid and correct explanations wrt. valid
explanations is very small.

Once a general framework is established, let us study which deductive and inductive abilities
are feasible and interesting to be measured within it.

4 Deductive Abilities

Apparently, deductive abilities are much easier to measure, because there is no possible subjectivity
in the correct answer; given the premises and the way to operate with them, only one answer is
possible.



An instance of a deductive problem 7 = (S, C, I, A, ¢} can be defined in terms of the previous
framework in the following way: .S corresponds to the set of axioms or axiomatic system, C' is a
Boolean function which says what is a valid application of the axioms, [ is the instance of the
deductive problem, A; the answer and ¢ is a verifier, i.e., ¢((S, I, E)) = A;, in this case, a verifier
that checks whether A; is a result of applying a solution to I in S.

In this case the explanation E is represented by a proof in S stating that A; is a the result of
I or, in other words, a derivation from I to A;.

Example: Consider for instance an accepter that tells whether a proposition is a theorem or not. Let
S be the axioms of arithmetic. Let C' a function that tells that a derivation is valid according to the rules
of application of the axioms, and let I be the instance “Is Fermat’s famous conjecture true?” (recently a
theorem). Which is the hardness of the solution A = ‘yes’? The descriptional complexity of A (which is
just yes) would say that the instance is very easy, however its hardness given by H turns out to be the LT
of the proof with less LT. Consider instead the instance “solve 243" which, also with a low complexity of
A = 5, turns out to be simple, because the derivation is describable easily and shortly from (S, C,I). In
general, any calculation is shortly describable, so its hardness will depend solely on its temporal cost.

According to this example, we can distinguish some classical deductive problems that can be
measured. In particular, the following factors are distinguished:

— Calculus Ability: in this special case, C' only allows a specific and deterministic application of
the rules or axioms of S. In this case the search space is linear. As it has been said before, its
complexity is exclusively given by the logarithm of the time which is needed from the input
I to the output A4;. This ability is not of much interest to be measured nowadays, since it is
better done by computers than humans, and it would finally measure the computational power
of the subject / machine.

— Derivational Ability: in this case, C only allows a varied application of the rules or axioms
of S. Consequently, the search space is open. The complexity is then given by a compromise
between the logarithm of the time which is needed to know that a branch leads to no solution,
and some information that may say which branches to take (and which ones not to take).

— Accepter Ability (proving ability): It is a special case of the previous ability, with the special
feature that I can only be ‘yes’ or ‘no’. Theoretically, there is no reason for expecting that a
subject has a different result in this problem that in the previous one.

The way to implement a concrete test for the previous ability is not complicated. For calculus
ability, it is just necessary to generate some derivations. Their length will determine the time
which is needed to follow them. On the contrary, for the other two abilities, it is necessary to
generate a possible derivation, and look that there are no shorter equivalent derivations. This,
in general, will be extremely costly, growing exponentially according to the value of k-solvability.
Fortunately, there is no need for efficiency here. A hard test can be generated during days, even
weeks, and then passed to several subjects.

5 Inductive Abilities

A sequential inductive problem « = (S,C,I, A, $) can also be defined in terms of the previous
framework in the following way: S corresponds to the background knowledge, I is a sequential
evidence (with I(I) = n), C is a Boolean function which represents the hypothesis selection criterion
(e.g. simplicity), A; is the prediction of the (n + 1)th element of the sequence and ¢ is a verifier,
ie, ¢((S,1,E)) = A;, in this case, a verifier that checks whether A; is the (n+ 1)th element given
by the hypothesis with the background knowledge S and also checks whether both cover I.

In this case the explanation F is represented by a ‘hypothesis’ wrt. S that affirms that A; is
‘what follows’ I or, in other words, a prediction from I.

Example: Consider for instance a prediction problem. Let S be a background knowledge, containing,
among other things, the order of the Latin alphabet. Let C' a function that tells that a hypothesis is



good according to a selection criterion, and let I the instance “aaabbbcccdddeeefffgggh”. Which is the
hardness of the solution A; = ‘h’? The descriptional complexity (in LT terms) of the hypothesis is again
what is taken into account.

The main question of evaluation of induction is that of inquestionability. Even if the selection
criterion is given, two plausible explanations may differ slightly, and the selection criterion would
give that one is slightly better than the other, but this would depend highly on the descriptional
mechanism used. In [12] and [11] this difficult problem is addressed, according to a comprehensive
criterion, a variant of the simplicity criterion based on Kolmogorov Complexity in the style of
Solomonoff [19], but ensuring that the data is covered comprehensively, i.e. without exceptions.
Accordingly, the simplest explanatory description, denoted by SED(x|y), is defined in [11] as the
simplest (in LT terms) description which is comprehensive wrt. the data z given the background
knowledge y. To ensure unquestionability, the examples are selected such that there are no al-
ternative descriptions of similar complexity that give a different description. Finally, there is a
small possibility that a good prediction is given by a ‘wrong’ explanation. This probability may be
neglected in the tests or corrected by a penalising factor in the score of wrong results.

From here, partially independent factors can be measured by using extensions of the previous
framework. For instance, inductive abilities, such as sequential prediction ability, knowledge ap-
plicability, contextualisation and knowledge construction ability can be measured in the following
way:

— Sequential Prediction Ability: several unquestionable sequences of different k-solvability are
generated. A test for this ability has been generated in [12] and passed to humans, jointly with
a typical psychometrical test of intelligence. The correlation showed that this is one of the
fundamental factors of intelligence, although more experimentation is to be done.

— Inductive Knowledge Applicability (or ‘crystallized intelligence’): a background knowledge B
and a set of unquestionable (with or without B, denoted by H(x;|B) and H(x;) respectively)
sequences x; are provided such that H(x;|B) = H(x;) —u but still SED(x;|B) = SED(x;).
The difference of performance between cases with B and without B is recorded. This test would
actually measure the application of the background knowledge depending on two parameters:
the complexity of B and the usefulness of B, measured by .

— Inductive Contextualisation: it is measured similarly as knowledge applicability but supplying
different contexts By, By, ..., By with different sequences z; ; such that H(z; +|B:) = H(x; ) —u.
This multiplicity of background knowledge (a new parameter T') distinguishes this factor from
the previous one.

— Inductive Knowledge Construction (or learning from precedents): a set of sequences z; is pro-
vided such that there exists a common knowledge or context B and a constant u such that for
H(xz;|B) < H(x;) — u. A significant increase of performance must take place between the first
sequence and the later sequences. The parameters are the same as the first case, the complexity
of B and the constant u.

It is obvious that these four factors should correlate, especially with the first one, which constitutes
a necessary condition for having a minimal score in the other factors.

6 Dependencies and Other Factors

Although there is a common (but argueable) view of induction and deduction as inverse processes,
they are not inverse in the way they use computational resources. In fact, any inductive process
requires deduction to check the hypotheses, thus, obviously, inductive ability is influenced by
deductive ability. This has been usually recognised by IQ tests, where deductive and inductive
abilities usually correlate. Due to this fact, inductive factors usually are the main part of intelligence
tests, because deductive abilities are implicitly evaluated.

However, if we are looking for ‘pure’ factors the question is whether there is a way to separate
this deductive ‘contamination’ in inductive factors.



The idea is to provide ‘external’ deductive abilities when measuring inductive factors, in order
to ‘discount’ the deductive effort than otherwise should be done. For this, given a problem 7 =
(S, C, ¢) it is only necessary to provide an ‘oracle’ which computes ¢ in constant time. The subject
must only guess models (hypotheses) and check them in the oracle, by providing the hypothesis
to it and comparing the results with the evidence I. This would measure the ‘creative’ part of
induction. In the following, let us denote by ‘purely’ inductive the corresponding factors to those
highlighted in the previous section which result from providing the oracle.

This resembles a ‘trial and error’ problem considering reality acting as the oracle. The issue is
how to implement this in a feasible way, especially for evaluating complex agents or even human
beings. The best way, in our opinion, is the construction of a ‘virtual’ world where the subject to
be evaluated can interact and essay its hypotheses with no effort.

In a similar way as the oracle for ¢, some difference could be estimated if the syntactical machine
C' is (also) given. Although this would not be much representative for deduction, for induction it
would discount the ability of working with the selection criterion, which is an important trait of
induction.

Nonetheless, deductive ability is also influenced by inductive ability as long as the problems
become harder. Some lemmata or rules can be generated by an intelligent subject in order to
help to shorten the proof from the premises to the conclusion. This may explain why artificial
problem solvers without inductive abilities have not been able to solve complex problems, and
this is especially clear in Automatic Theorem Proving. Consequently, recent systems are beginning
to use ML techniques for improving performance. Background knowledge could also be examined
in deduction, provided S includes the axioms but also some useful properties. This finally gives
similar factors as those given for induction:

— Deductive Knowledge Applicability: how lemmata or properties are used for a deductive prob-
lem.

— Deductive Contextualisation: the ability of using different contexts for different problems.

— Deductive Knowledge Construction: this will measure the increase of performance between first
instances and last ones.

Finally, we have given a measurement for sequential induction, and it seems interesting to evaluate
non-sequential induction as well, where an unordered set of elements is given as evidence from
an unknown function that maps whether an element belongs to a set. In this case, the test could
give some possible values which might be members of the set, although only one of them is really
in it. Solomonoff formalised deterministic (sequential) prediction [19] and recently, has formalised
non-sequential prediction [21]. This problem is similar to the inductive problem of learning a
Boolean classifier and can be extended to the case of a general classifier. To eliminate the deductive
contamination of the measurement of non-sequential induction, the ‘oracle’ ¢ should be a classifier,
telling, given a hypothesis, to which class the element belongs. The essay of an ‘oracle’ that accepts
several elements at a time should be considered as well.

Once the basic deductive and inductive factors have been recognised, the question is whether
there are many other factors which are relevant to be measured. For instance, memory or ‘memo-
isation ability’ is a factor that is knowledge-independent and it can be easily measured. However,
this factor is not very interesting for AI nowadays.

Other factors, such as analogical and abductive abilities can be shown to be closely connected
to inductive and deductive abilities both theoretically and experimentally. A first approach for
measuring them has been attempted in [12], and the test applied to human beings has shown the
correlation with inductive abilities.

However, not every factor is meaningful. Factors like “playing chess well” are much too specific
to be robust to the subject’s background knowledge. However, it cannot be discarded that some
game-playing factor would measure competitivity and interactivity abilities aside from deductive
and inductive abilities.



Finally, we have considered individual tests which measure one factor. For measuring several
factors at a time, the exercises should be given one by one and, after each guess, the subject should
be given the correct answer (rewards and penalties can be used instead). This has two advantages:
there is no need for the subject to understand natural language (or any language) to order to be
explained the purpose of the test, and there is no need to tell which factor or purpose is to be
measured in each part of the test. There is also one disadvantage, deductive problems should be
posed in terms of ‘learn to solve’, and this may devirtualise them.

7 Applications

Modern AT systems are much more functional than systems from the sixties or the seventies. They
solve problems in an automated way that before required human intervention. However, these
complex problems are solved because a methodical solution is found by the system’s designers,
not because most current systems are more intelligent than preceding ones. Fortunately, the initial
aim of being more general is still represented by some subfields of Al: automated reasoning and
machine learning.

Automated reasoning (more properly called Automatic Theorem Proving) is addressing more
complex problems by the use of inductive techniques, while maintaing their general deductive tech-
niques. These systems, in fact, have been used as the ‘rational core’ of many systems: knowledge-
based systems, expert systems, deductive databases, ... But, remarkably, the evaluation of the
growth of automated reasoning has not been established from the success of these applications
but from the increasingly better results on libraries of problems, such as the TPTP library [22].
However, there is no theoretical measurement about the complexity of the problems which compose
these libraries. Instead, some approximations, such as the number of clauses, use of some lemmatas,
etc., have been used. Following the approach presented in this paper it would be interesting to give
a value of k — solvability of each of the instances of these libraries.

In a similar way, machine learning has recently taken a more experimental character and systems
are evaluated wrt. sets of problems. Except from general problems (classes), where their complexity
(or learnability) has been established, there is no formal framework for giving a scale for concrete
instances.

In this new and beneficial interest in measurement, Bien et al. [1] have defined a ‘Machine In-
telligence Quotient’ (MIQ), or, more precisely, two MIQs, from ontological and phenomenological
(comparative) views. Any comparison needs a reference, and the only reference of intelligence is,
for the moment, the human being. This makes the approach very anthropocentric, like the Tur-
ing Test. The ontological approach, however, is not based on computational principles but on a
series of characteristics of intelligence that are defined on linguistical terms rather than computa-
tional /mathematical ones, such as long-term learning, adaptation, recognition, optimization, etc.
Moreover, the evaluation is generally measured on performance on some specific problem, contrary
to the claim that “it is time to begin to distinguish between general, intelligent programs and
the special performance systems” [18]. Although this can be very appropriate for specific systems
where functionality is clear, in general this would not allow for the comparison of intelligence skills
of different systems devised for quite different goals. How to define general and absolute character-
istics of intelligence computationally is more difficult and new problems present themselves, but
the progress in the ‘intelligence’ of Al systems can only be measured in this way.

8 Conclusions and Future Work

Among the problems for making these measurement reliable there is the selection of a reference
machine. The evaluation of abilities with instances is dangerous because it depends on constants.
Since there is no apparent preference for any descriptional mechanism, we plan to adapt these
notions for logic programming, because it is a paradigm that has been used both for automated



deduction and machine learning (ILP) as well as other uses (abduction, theory revision, ...), and,
in our opinion, is not biased.

For the moment, the framework which has been presented allow for the measurement of dif-
ferent factors and clarifies the distinction between evolutionary-acquired knowledge, life-acquired-
knowledge and ‘liquid intelligence’ (or individual adaptability). Several tests for different subfields
of Al could be devised following this paradigm, and the increasing scores for solving more and
more complex (k-solvable) problems may be a way to know how much intelligent AT systems are
wrt. previous generations systems.
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ABSTRACT

With development of system complexity and performan-
ces, it 1s important to evaluate its ability to perform
tasks, especially in the case of opposing outer effects.
This amounts to affect ”intelligence” coefficient to the
system, which basically requires to transfer usual geo-
metric space calculations to more global and qualitative
task space, the only one where this coefficient can have
a meaning irrespective of system structure. The pro-
blem is discussed here by defining the useful information
by its analytical expression explicit in terms of system
elements. By application to the class of deformable La-
grangian systems, adapted controlled structure is con-
structed. Intelligence measured by minimization of a di-
stance between demand and result mainly appears as
a compromise between information ball and robustness
ball reduction for fixed system complexity.

Keywords : System complexity, Functional Asym-
ptotic Control, Useful Information and Entropy, Intel-
ligence, Task Space Control.

1-INTRODUCTION

As technical systems required for real life task accom-
plishment are becoming very complex both in their (hard
ware) physical realization and in the related (software)
organization of their command-control structure, an em-
erging question is in the possible existence of a limit in
improving these systems. Supposing everything can be
continuously extended on hardware side, a direct conse-
quence on soft side is the research of a quantitative way
to scale system capability, ie in short to measure their
“intelligence”[1].  One should first make sure that the
question has a well defined meaning as for human the de-
finition of intelligence is multiform and depends on the
emphasized ”qualities” in the tests. Also, a difficulty
is the domain on which this ”intelligence” is applied,
as there exists different kinds of human ”intelligence”
ranging from high abstraction to very applied domains.
To avoid these problems the angle of approach will be
modified and, as a system 1s generally designed for ac-

complishing a prescribed set of tasks, its ”intelligence”
compared to another system will be evaluated in terms
of its "efficiency” to collect the relevant information for
these tasks and to use it in its accomplishment. A com-
panion question is system adaptation to different or even
adverse working conditions, which also amounts to eva-
luate the size of robustness ball corresponding to the
selected tasks. A difficulty however reappears with the
word ”selected” as concerns "who” is chosing the tasks,
and this stresses the huge difference between dedicated
and self-deciding system structures. In first case, ”intel-
ligence” measurement is limited to evaluation of simple
faithfullness in design and organization, and to robust-
ness to parameter change, whereas in second one, a new
dimension in system evaluation capability is added, sho-
wing that the problem cannot be handled in an universal
and unique framework.

Another strong restriction is coming from hardware. Ex-
ample of lightweight robot arms[2] shows that for high
enough power there exists a breakpoint where internal
material structure generates excitation of internal de-
formation modes impairing initially researched perfor-
mances. One may speculate that this could be cured by
adequate controller design using vision system, most ad-
apted to detect working environment and to give more
flexibility to adapt to task change. As mounting vision
sensor on robot arm 1s no longer possible with defor-
mations, exterior more rigid fixture should be used. If
environment is then correctly observed, robot arm vi-
brations still remain, forbidding fast enough approach to
target. So including robot end effector in visual obser-
vation may appear as a natural solution, but the reality
is that this is not possible as actuator frequency range is
significantly smaller than typical perturbation frequency
range. Active control robustification, a constant trend in
control research over the last decades, becomes inefficient
beyond some today crossed limit because of the inavoi-
dable spillover from low frequency actuator range to high
frequency internal system range which severely limits the
performances. This internal contradiction (more con-
trolled active power for nominally better performance



leading to secondary internal phenomena downgrading
more this performance) also makes the ”intelligence” as-
sessment somewhat questionnable in the present context,
and bounds even more the domain where the problem has
a well defined meaning. Interpretation is that usefulness
of collected information from sensors is strongly system
depending, including human operator, raising the pro-
blem of its adequate selection for a given system and a
prescribed task.

Escaping from these difficulties is however possible by
observing that this limitation comes from unability of
computation-control system to reconstitute, as it classi-
cally does, actuator command from trajectory observa-
tion for its efficient control. Two different elements are
implied in this statement. One is the impossibility past
some level of complexity to distinguish between two close
enough trajectories. Even with perfect end effector loca-
tion in time and space, decomposition of this observation
on base representation functions becomes unrealizable
when flexion and torsion effects are mixing up in a very
complicated motion. Control action becomes inefficient
if one-to-one relation between control and trajectory is
no longer maintained. Even if it were maintained, the
power would have to be delivered, owing to speed and
torque requirements, in a too high frequency range for
present actuators, and this would be technically non rea-
lizable. The second element is also of fundamental nature
in that there is no direct action on deformation modes
from actuators, as they are receiving their power input
from rigid motion mode, leading to a mismatch between
internal natural power cascade and external one imposed
by feedback loop with usually spillover effect impairing
again system performance.

As there is inadequation between basic physics under-
standing and new bifurcated situation, classical point of
view should be changed. With trajectory non distin-
guishability the base ingredient for trajectory control, ie
its time dependence in usual state space representation,
should be abandonned. Only trajectories as a whole have
now a meaning, and global enough information is rele-
vant. Reducing the complete non controllable system
dynamics to smaller initially driving rigid ones, time de-
pendent system trajectory is embedded into a selected
class by application of fixed point theorem. The resul-
ting control, explicitely expressed in terms of global sy-
stem quantities, still gives asymptotic stability toward
desired trajectory, and exhibits the interesting property
to be at its level naturally organized toward task orien-
tation. So in progressing toward higher quality perfor-
mances with higher designed and more complex systems,
use of better components is not sufficient and control
structure has also to fit with system properties, implying
mainly application of subsidiarity principle guaranteeing

minimization of internal information flux. This resto-
res adjustment of system hardware structure to possible
task assignment, as it gives again the system the way to
have appropriate internal information exchange compa-
tible with power flux. Resulting internal coherence thus
appears as an extremely important element in the possi-
bility of measuring system ”intelligence”.

To 1llustrate the previous concepts developed at system
level, useful information is defined in next paragraph and
task oriented control for general Lagrangian system dy-
namical equations is considered. Application to actuated
one-link robot arm with flexion and torsion deformations
carrying of-center massive object is discussed with Euler-
Bernouilli approximation. When compared to usual con-
trol based on vision system which in present case cannot
insure trajectory stability, ”local” deformation effects are
internally taken care of by proposed control. As much
lower information flux circulation is implied, vision sy-
stem is freed for higher level task of driving the approach
to desired target, and for much more modest computing
requirement. In this sense, actual system may appear as
more "intelligent”.

2-SYSTEM REPRESENTATION AND
USEFUL INFORMATION

For global system improvement, system parts have them-
selves to be improved in their various components. Basi-
cally three hardware parts always exist in a system, 1)-
a mechanical-physical part, 2)- a sensor-computing part,
and 3)- a power-actuation part, see Fig.1. There also
exists a fourth software control law part, which should
enable the system to correctly perform in targetted range
within its new physical conditions, manifested by the
creation of a (possibly infinite) number of internal mo-
des, thus increasing its number of degrees of freedom, and
making previous classical controls inadapted. The con-
trol based on the new physical conditions theoretically
exists[2] and still makes system trajectories asymptoti-
cally stable, ie it guarantees again tracking performance
requirements.

Due to larger excited frequency band when mode num-
ber increases, the problem now rests upon 1)- sensing
and treating this new added information, and 2)- gene-
rating the corresponding power inputs as needed for in-
creasing system performances. The first point belongs
to sensor-computing part, and is handled within exi-
sting technology covering a large frequency band with
a wide set of technical solutions and corresponding to
broad range of accuracy. For the second point, despite
the large size domain ([10~1m, 101m]) without going into
more specific microsystems, there still exists a frequency
gap between classical actuators low frequency domain
([0,30Hz]), and high frequency domain corresponding



to ”smart” material systems ([3.102H z,3.103H z]). Any
new information is directly usable only if it belongs to
the intersection of both sensors and actuators frequency
ranges. A very striking case is vision sensor giving an
over-detailed amount of informations not directly useful
for system control improvement. Consequently to give
the system adapted capability, the problem is not in get-
ting more information as believable from the increase
of system internal degrees of freedom, but on the con-
trary to reduce the extra-information from state space
in frequency range outside actuator’s one, and in order
to maintain robust asymptotic stabilization by adapted
control within the uncertainty ball corresponding to the
unpreciseness produced by this reduction. As shown on
Fig.1, it 1s after collection of rough information from sen-
sors that there should exist a reduction process to filter
the only relevant information needed for reaching system
targets. This leads to the definition of useful information
determined from task orientation rather than lower level
unexploitable trajectory orientation. It is based on ob-
servation that occurrence of events rests upon removal of
a double uncertainty : the usual quantitative one related
to occurence probability and the qualitative one related
to event utility for goal accomplishment. So events may
have same probability but very different utility, and this
explains why some extra informations on top of existing
ones have no impact on reaching the goal. In present
case, it can be verified that, calling «; and p; the utility
and the probability of event E;, and I(u;, p;) its associa-
ted information called useful information, the relation

I(u, p1p2) = I(u, p1) + I(u, p2) (1)

holds for event F;U E5 with same utility u. On the other
hand, there is strict proportionality between utility and
corresponding information, so

I(Au,p) = A (u,p) (2)

With eqns(1,2), there results that useful information is
given by
I(u, p) = —ku.logp (3)

where k is Boltzmann constant. Usual entropy calcu-
lation is thus obtained by presupposing that all events
have same utility for goal accomplishment, which is cer-
tainly true in Thermodynamics where all molecules are
totally interchangeable and thus indistinguishable. As
a consequence 1t 1s well known that only the invariant
corresponding to this equivalence class, here the energy
(or the temperature), allows to separate thermodynami-
cal systems. Similarly internal system deformations (fle-
xion and torsion) are undistinguishable events as they
are layered on invariant surfaces determined by the va-
lue of bending moment M at link’s origin[3]. So using

their observation to improve system dynamical control
is not possible; in the same way as observing individual
molecule motion in a gas does not improve its global
control. As a result, raw sensor information has to be
filtered so that only useful information for desired goal
is selected. This is precisely the remarkable capability
of living systems to have evolved their internal structure
so that this property is harmoniously embedded at each
level of organisation corresponding to each level of deve-
lopment. In this sense they are remarkably intelligent.
An important element here is that the process has been
subsidiased into the hardware structure in order to free
the upper levels.

3-LAGRANGIAN EQUATIONS FOR
DEFORMABLE SYSTEM

To proceed, advantage will be taken of the general la-
grangian form of deformable system in order to exhi-
bit directly on system equations the features discussed
above concerning information reduction. First there is
a cascade effect of exterior forces onto rigid dynamics
feeding itself deformation modes, allowing reduction of
complete initial (infinite dimensional) system to (finite
dimensional) ”core” rigid system, see Fig.2. Then, and
as long as "natural” boundary conditions are conside-
red for the system, only these intrinsic elements will be
really needed to control system dynamics. By ”natu-
ral” are meant boundary conditions constructed with the
remaining terms coming from the various integrations by
part needed to transform system action variation into
Lagrange equations. More specifically, with Lagrangian
density
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8uk(51,t) 8muk(51,t) ot
ot ’ oxm T

Ly =L (q]'(t), dg;(t) Jup(z, 1), Juy (2, ) 0™ up(x, 1)

u(S1,1),

()
depending on both discrete (rigid) variables ¢;(¢) and
field (deformation) variables u; (x,t) up to their pth space
derivatives, as well as their values on a part (S1) of total
system boundaries (S = Sy x S2) of the space domain
D(#) in the additive form
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of a rigid variable part Lr and a deformable one £p, and
where the arguments in the second part are the same as
in eqn(1). The variation of the action
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inside the space domain D(x) and over the time interval
[to,tf] can finally be splitted into two parts, one under
the integral sign and another one expressed at the boun-
dary (S) of D(z) and at the limits of the time interval (if
there are ”transversality conditions”), and resulting from
integrations by part. Writting that system equations are
deduced from the action Z by a variational principle im-
plies two elements :

- 1 - the Lagrange equations
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are satisfied inside the space-time domain, with U; the
control acting onto the system,

- 2 - the remaining boundary terms resulting from inte-
gration by parts are equated to the work done by exterior
force terms onto the system, ie.
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and transversality conditions if any are satisfied. Boun-
dary conditions are called "natural” when they are con-
structed from these quantities, and not from different
ones.

For a 1-link system, the lagrangian writes in partitioned
form
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with rigid part

o> A6, \*> )
Lr—Ja (E) —|—Jm (W) +[\m(9_9m) (10)

in terms of rigid articular and actuator variables ¢; = 6,
g2 = 0,,, deformation part
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in terms of flexion and torsion variables u(t, z), y(t, ©),
and interaction part
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at links boundaries, out of which dynamical equations
and boundary conditions are easily obtained[4]. (I}, ;)
are coordinates of tip mass m with respect to link’s end,
and the various other coefficients characterize the beam
as usual within Fuler-Bernouilli approximation. One can
verify that in link and actuator equations coupled by
compliance effect, are both acting the applied input tor-
que 7 and the bending moment M, = E1(d%u(t,0)/0xz?),
here the only term through which deformations are seen
by system rigid part.

4-TASK ORIENTED CONTROL

In general, the system is assigned to perform an action,
and a control is set to give the system the ability to meet
the corresponding requirements. This is always expres-
sed as satisfaction of Lyapounov theorem with adapted
Lyapounov function, writen in terms of system trajectory
parameters in state space. In other words, control is tra-
jectory oriented, and all sensors are used in this view. In
particular, vision sensor if any will provide information
on link tip motion. As seen above, this is misleading
as long as observed motion belongs to an indistiguisha-
ble class. Control has to be approached in task oriented
sense, and, for reaching the goal, is governed by a choice
of ”good” informations depending of their utility defi-
ned above. Starting from partial Hamiltonian density
associated to deformable part
O0Lp .0Lp +i(S) 0Lp

B Lo
Mo =i, =15, 9a(S)

Uu(S)m— D
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one will consider system Lyapounov function
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with positive parameter gains Kp;, I'v;. Its time deri-
vative along system trajectories is
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Substituting for d?q; /dt? from explicited Lagrange equa-
tions(7) and eliminating all other second order time de-
rivatives, one will get an ”inertia” term F,; which, on
physical grounds, is equal to forces other than exterior
forces I acting onto system of discrete variables ¢;, and
coming from the (back) effect of the field variables u(x,?)
onto discrete variables ¢;(¢). As V is positive definite for
large enough definite positive gains (Kpj, I'v;), its deri-
vative can be made definite negative by taking control U;
so that the term between brackets is equal to —(Kv ¢);,
where matrix Ky is definite positive. The resulting form
of the control (supposing there is no exterior force)

Uj = =Kpjg; — Kvgj + Kp(g,4j,- ) + Krpj Faj (16)
and generalizes usual PD-control to full nonlinear case.
In fact, it fits more generally the expression of dynamical
system control

U= Ucomp + UPDF + AU (17)

when writing the tracking condition for desired trajec-
tory ¢;(t) = ¢;4(t) and splitting the various control com-
ponents, with

— . 1
Uppr =Upp + KF [O]Fa (18)

Moreover, from argument above, the control law in eqn
(16) gives both asymptotic tracking of desired trajectory
for discrete variables and asymptotic stability for field
variables as well as their first order time derivatives.
From eqn(15), equating the sum between brackets in its
right hand side to —(Kyv ¢); amounts to take a control-
ler of PDA type[5]. However, it should be observed that
the resulting invariant subset of dV/dt is the same as
when I'; = 0. So the same convergence property of the
solutions is expectable for any value of I';. The reason
of introducing the new kinetic term with I'; # 0 is in
the role of the direct acceleration term, or of the new
resulting term Fj; after substitution, which is mainly to
change the relative values of inertia-damping-stiffness sy-
stem parameters with respect to field modes, as already
observed and used for classical force control.

But after substitution from Lagrange equations this term
is an integral of a complicated function of field variables
and their space derivatives over the domain D(z). So
there is no advantage to use it in this form which requires
local knowledge of field variables inside the domain, un-
less Lagrangian structure is such that this integral trans-
forms into explicit well identified and sometimes directly
measurable surface quantities. A very simple case occur
when the Lagrangian Lp is such that formally

0Cp ddLp 9Lp dOLp 19)
d¢;  dt 94  Ou  dl du

Then from Lagrange eqns(7) there results
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The ”inertia” force term Fjs is just equal to the boun-
dary term in the first bracket of eqn(8) when I'; = 0,
and is expressible in terms of this quantity, and of rigid
variables ¢; and their first time derivatives when I'; > 0.
This global expression contains all needed information to
control the local action of (infinite dimensional) defor-
mation effects, usually approached by decomposing this
source term onto all projection space and cutting at a
finite mode number with spillover consequences[6,7].
Much more than local control, more global task oriented
control will also be independent of (too) detailed infor-
mation on link deformations. Typical task is to reach
a preassigned target under specific circumstances. Re-
turning to eqn(3), this amounts to minimize the total
entropy production associated to any motion in the class
of acceptable trajectories fixed by the local control de-
fined in previous paragraph, so its expression depends
in general of all trajectory parameters. To this end, the
utility u will be taken as the gradient of a convenient
positive definite quantity such as a Lyapounov function
to define a steepest path and more importantly, to elimi-
nate before data processing irrelevant task information,
saving enormous amount of time and data space. So with
(p) the set of all observed parameters one gets

oy

T

(20)

and in eqn(3) only will remain terms for which this ex-
pression is above a minimum threshold value correspon-
ding to system sensitivity. So all collected information
from sensors is filtered in terms of its utility for the pre-
scribed task. This explicit result is independent of the
dedicated or selfdeciding character of the system. With
eqn(14) for instance, the only dependence of V on trajec-
tory parameters is through bending moment M, so when
taking the gradient with all sensor information, there
only remains a term 0V/OM , and more detailed trajec-
tory information does not appear. So adapted control
splits finally into a local one expressed in terms of global
(relative) invariants M, and a nonlocal one depending
on utility of these quantities for reaching final target.
Though trajectory oriented the first one directly links to
the task oriented second one and respects the very nature
of internal information provided by system structure. In
this respect, system intelligence is easily measured by in-
formation flux from eqn(3) and by associated robustness
ball of the applied control corresponding to a distance
between demand and result.



5-CONCLUSION

Analysis of system structure shows that evaluation of its
intelligence 1s only meaningful in task space. This re-
quires the satisfaction of internal coherence conditions
manifested by system ability to extract from its sensors
the relevant information for these tasks. The problem
is studied here by defining the useful information which
precisely allow to pass from initial geometrical space to
task space irrelevant of the way the system is designed
and organized. Application 1s made for Lagrangian sy-
stems representing deformable bodies, for which equati-
ons analysis shows that even if at first sight system na-
ture is drastically changing with increase of state space
dimension to infinity, internal system organization also
changes in such a way that its local control still remains
fundamentally finite dimensional. Observation of new
deformation modes is not only useless, but also dama-
ging in that it leads to control form interfering with na-
tural internal feedback regulating power exchange bet-
ween displacement and deformation. Sensors providing
too detailed information are not adapted as it has to
be filtered for reconstitution of needed more global one.
More efficient way is to use local control based on na-
tural system invariants, directly linkable to more global
task oriented control based on useful information (rat-
her than filtered one) expressed in terms of utility fac-
tors constructed as the gradient of Lyapounov with re-
spect to trajectory parameters. When they aggregate
into trajectory invariants, only their derivatives finally

~
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appear, justifying again the choice of previous local con-
trol form. Moreover, the association of the two level form
presented here respects natural system organization and
minimizes information transfer between the two levels.
System intelligence is directly measured by task adapta-
tion expressed here as both circulating information flux
and robustness ball corresponding to local controller for
a given distance between demand and result.
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Abstract are falling in the easy way of thinking mentioned by Bateson

[3, page 82] olusing words that appear more concrete than they
This paper tries to stress the need of having a clear understanding ofjleg

concept of intelligence before we can progress in the formulation of agafgre entering into main matter, let's start with a brief dis-

;zzgiilif%rﬁogghfaigg Ejﬁggfji;:ﬁgw ofintelligencetactural ¢\ ssjon about the adequacy of ascribing mental properties like
! y intelligenceto machines.

Keywords: Intelligence, performance, behavior, mental models, °
structural feedback. 2 WHAT IS INTELLIGENCE ~

It is common to address intelligence as a property inherent to
1 INTRODUCTION something we call mind. The use of both terms, intelligence
) ] o o ~.and mind, is not that clear. In fact, each one of us appears to
This paper tries to suggest the practical impossibility of findifg,e his own notion of intelligence speaking in terms of everyday
asinglggndusefu} measure of general intelligence for all typgﬁfe. Although deep thought and study about the topic can clarify
of artificial systems performances unless we get some previgugia| notions of intelligence, there is still no global perspective.
result in the form of a sound theory of intelligence. We want the following question to emergaoes intelligence

As was stated at the workshop website, its goal is to discysg|y exist? After what has been said and having in mind our
three challenges pertaining to intelligent system performancegonstant references to the concept, it really seems ridiculous to

« how to measure performance: question it. But we would like to point out the fact thatel-
’ ligencecould well be one word hiding what can be considered
e how to evaluate intelligence and a too fuzzy concept. By this we mean that the word does not

) ) ) have a fixed reference to something that can be pointed out, such
e how to put performance and intelligence into correspogs g dog or a table (it lacks a true referent). It is in some sense a
dence. concept similar to a notion of a mathematical space, i.e.: every-

We will try to address the three points in order (see secti N9 which ma_tches certain restrictions is partiteliigence
e space of things that think.

4,5 and 6), but first we want to make a first comment. Wh h t has lost in thi th t rigidity: th
talking about intelligence a problem appears, and it is that "intel- € concept has fost In this way the apparent ngidity, the
stion, although, may be, in a more precise wajnat are

ligence” is a moving target. Some centuries ago "a person a re . .
9 g targ g P the restrictions a feature has to match to form part of intelli-

to read” implied "a person very intelligent”. Now we don’t con- 5And at thi int th di b th
sider this ability as a symptom of intelligence in a person of ofpnce ANd at this point the answers diverge because the num-
r of possibilities is close to infinitY. It would be an error to

environment. But if we talk about an animal, forsone exam tth tion like this. Perh i Id be better t h
a dog, "able to read” is still considered a good manifestation‘ﬁll € question fike this. Fernaps It would be better 1o approac
the topic in another waywhat is behind everything we seem to

intelligence. ider intelliagent?S hing this instead of ticul t
So, what is that stuff that appears or disappears as you poirﬁoélrs]' er e igent s Searching tiis iNsieac of & pateuar se

different entities? Can intelligence be in the eye of the beholdg{’.jp aractterlfsill’c]:s wc.)utld evenftlljatll)lllllead toa rullg E\mh Wh'.(t:)rl] the
We think that the term is used in two quite different ways: bLj gement ot the existance of Intefligence would beé possible.

As a comparison between two entities that can be both explic:i{n any case, once itis clear if something is intelligent or not,

or one implicit (a normal dog) and b) As an absolute measure o ould be tempting to determinkow intelligent that is, how

some core capability. much intelligence it has This question is too particular to be

While we can mostly agree with Alex Meystel conception of 2Bateson says about these words that they are too short and this shortness

intelligence as @ore concept underlying mindperhaps all we Conveys an erroneous ascription of concreteness.
3A linguistic variablein its most pure senség. created by language.

1From an engineering point of viewe. to build/analyze artificial systems. “This is to be thought in a sensetob broad for understanding




answered. The individual intelligent characteristics which con-It is these days is when we are starting to get some direct in-
stitute theintelligent set of featuresne self possesses are eadight into the inner working of human minds by means of PET
specialised, and in this way not comparable.this way, given a (positron emission tomography) or fMR (functional magnetic
set of intelligent characteristics, the only judgement that has aagsonance [4]). As an example, fMR has confirmed what many
sense needs to be put in terms of targets and adequation to thagdong suspected —that men and women think differently. Yale
targets: performance. Medical School investigators did compare the brain operation of
Returning to the rule which would enable discrimination beaen and women while reading, discovering different activation
tween intelligent and not intelligent, it should not be focused gatterns in their brains while performing the reading task.
common aspects of features we usually consider intelligent, bufnother example of the difficulties in matching human mental
on requirements which make them possible. For example pacancepts with machine mental concepts can be found in [2]:
lel calculation, memory, etc. Having this in mind, the decision to
consider something intelligent or not comes from the process of |ndeed, if mechanical devices can distinguish wave-
analysis of the underlying capability, i.e.: learning what can be |engths of light without having sensations, then why
expected from a being with such capability (eg. memory) when o | experience any sensation at all?.
in a particular environment and with a more or less elaborate set

of targets. Apparently we end again with a certain notion of per-y;qst people tend to think that the humaensatioris some-
formance. _ _ thing more than the mere recognition of a input signal. Recog-
The last point we would like to focus on comes from lookingjtion at the simple level of signal capture, representation and
at the problem from a different angle. Whatntelligencewere (jqqering of activity. "Sensation” is nothing more than the trig-
a concept only suitable -clear enough- for human minds? Thgling of activity due to an input signal. The immediate imple-
is, we callsomethingntelligence, but it does not seem to have @entation in a computer is as an interrupt handler. The only
bounded notion behind. So, supposing it is a collection of fegierence is the high level of concurrence in biological comput-
tures we have grouped together, and not considering the fact thatihat et them be truly concurrent in responses to sensations.
we could have done so in other ways, what makes us think tbre are also human sensations that are so strong that they dis-
intelligenceis something (a table, a bus)? In other words, whaje further sensations. This is, exactly, the type of behavior

makes us think an alien would have a notion parallel toiDUr t4,nd when a computer interrupt handler disables further inter-
telligenceas he would if he came to Earth and saw a table OF@htions.

boat? Computers provide minds for physical systems, and it is time

to clarify the true meaning ahental concepts
3 HUMAN (SPECIES) CHAUVINISM

Let’s see what philosophers think about mental properties of Ma- PERFORMANCE AND MIPS IN BRAINS
chines. An example is what Crockett [5, p.193] says about the
use of human-like phrases to refer to machine thinking: A visible feature of biological intelligence erformanceas Jim
Albus pointed in his definition of intelligence. This is related
Our anthropomorphizing proclivity is to reify those ab-  to how we use the term for humans (remember the title of the
stractions and suppose that the computer program pos- book by Sternberg and Wagnétractical Intelligence: Nature
sesses something approximating the range of proper- and Origins of Competence in the Everyday Wprld
ties that we associate with similar abstractions in hu-  |n our search for metrics for intelligence, we are exactly in the
man minds. same situation as computer consumers and manufacturers were
some decades ago in relation with client-requested performance
measures. As they both discovered, the old-basic measure of per-
formance (MIPS: Million Instruction per Second) was useless to
compare different architectures.g. CISC vs. RISC) or applica-
tions (e.g.data-bases vs. finite-element analysis). The osly-
ful possibility they found was the evaluation of the performance
What amazes me more in this text is that people like Crocketspecific tasks, and hence this was the origin of benchmark-
strongly believe thaive knowwhat are the "abstractions in huing. Unfortunately benchmarks are not single measures, and at-
man minds” but onlysupposevhat the computer program postempts to build weighted benchmarks only changed the focus of
sess. In our experience we know -most of the time- what are the benchmark but not the final usability of them (they are always
abstractions -the representations- in mechanical minds but ankyasures of niches of functionality).
suppose what are those abstractions in biological minds. Task-independent measures, like MIPSbis/seconcbr en-

51t would be like comparing -adding, subtracting, etc.- apples and dogs: HRPY, are too raw to be useful for m.OSt engineering purposes
possible. because they are so far from the desired performance specifica-

Even more amazing is his continuation:

This is harmless so long as we remember that such
characterizations can lead to considerable philosophic
misunderstanding.




tion that we lack a theory that can map one into anéth&or 6 CONCLUSIONS
example, suppose that we want a distillation column controller

intelligent enough to minimize recirculation (a desired perfofyr analysis of the Mars rover story is that if the T implementa-
mance). Who can decide, based on a MIPS-like measure, {ig is successful everybody will agree that it is more intelligent
fuzzy controller A can fulfill the task, or if model-based prediGhan the H implementation. Even if both attain success. TO
tive controller B is better that A?. achieve this result the T implementation needs some mental con-

This theory that maps BIPS-like measuréo performance tent and some algorithms to exploit this mental content.
specified in useful terms what we are seeking in our research

on intelligent systems, because itis —in facke True Theory of
Intelligence The theory will not only let us evaluate alternativ

As we did say before we will propose a different interpretation

of i-stuff: it is focused ommental models Following this idea,

designs, it will be a true explanatory discourse that will redugg |nt'eII|gent bemg S 2 belng that has .mode'ls O.f his world in
’ Rfs mind and achieves intelligent behavior using its models for

Int‘?'(l)“gfgﬁ:v?, tgasj[gzlr?r’suwe"eii?gjnn%?dn’qtaerg:]s' concents that action. Intelligence is, from this perspective, a two sided con-

not concrete enough angéJ require further tﬁinking [\)/ve can a({s%)t: model-based menta_l content (sjcatic view (.Jf intelligence)
s ' 43%d model-based generation of behavior (dynamic view of intel-

the termi-stuff to refer to the substance measured by True Iln'ence)

telligence Metrics. George Saridis probably will equate i-stuﬁg C ,

to negentropy and Jim Albus to performance. We will make aCan the i-stuff be that collection models? Not SO. Becquse all

suggestion at the end of the paper. we know some knowledgeable people that are plain stupid.

What we consider the true core of intelligence is -plainly-
feedback. When feedback for action is done trough good mod-

els of the world it achieves incredible performance levels. When

In relation with what can we measure, we agree with Chris Lag€dback is used to tune parameter models it make systems adapt
dauer in the fact that "Success is not by itself the right critk2 changing circumstances in the world. When feedback is used
rion” because we have to split success into two contributiof@;modify models of the world this is a pure learning process.
mind and body (and bodily intelligence is not what we are tal¥/hen feedback is used to structurally modify the algorithms ex-
ing about). As an example consider two implementations oP®iting the models we are talking of creativityStructural feed-
future Mars rover whose main mission is going from point A tackis perhaps the highest manifestation of intelligence; when a
point B, one kilometer away, taking a sample of the ground eaf$tem Is able to create new control policies that will enhance its
50 meters: effectiveness.

) _ ) Perhaps this proposal only muddles more the discussion be-
Implementation H: 200 Ton. Caterpillar structure based on &, ,;semodelis even shorter thaintelligenceand it seems even

combination of bulldozer, power shovel and truck. Contrglsre concrete: but we think that it is relatively easier to devise
of sample taking based on mechanical coupling of poWektrics for model quality.

shovel to caterpillar (50 meters = sample). It lacks direc-
tional control because it is not necessary (it will advan?e

. - ut|
straightbulldozeringany obstacle.)

5 INTELLIGENCE AND BODILY CAPABILITIES

But even if we can measure quality of models and model evo-
ion algorithms, we are still halfway to the metric of intelligent
behavior, because we still lack a quality measure of the use of
Implementation T: 50 Kilograms. 10 Watt solar power panelthe model to generate the behavioe( a metric of the archi-
Microrobotic arm. tecture). Performance-based metrics, as suggested by Jim Albus

) ) ) definition of intelligence, will fit this niche but still they will be
Who will attain success? If both are successful, who is mcHSmain-dependent.

intelligent? Is performance a manifestation of intelligence? Th
two first questions are rhetoric. The answer for the last one
"not always”. !

There are some attempts to extend fundamental physical
ory to include information at the same level as mass and ene

In some sense we can analyze biological behavior as an exch ngolastmlty enough to adapt or tune to specific needs. Being

L ; o the case, in our opinion the core foundation of it will be
of mass (feeding in / excreting out), energy (chemical in / ther-" . : . : - o

. ) . T raw information processing with capability to autoorganize in the
mal & mechanical out) or information (sensing in / speech ou

We can attach these interchanges to human subsystems, a rm of models of the world and model exploitators generating

in- " : . .
formation will become associated to the mental system. T %Hawor. The theory of intelligence can be viewed as a theory of

N ) . .~ " action, a theory of representation or both.
division is, however, not very strict, because information is sup-

ported by means of mass or energy, and some energy inputs-are

managed as mass inputs (specially in animals) "Adaptation, learning, evolution, creativity, are facets -i.e. perceptions from
) an external entity- of a system changing in response to interactions with the

5This is, in fact, the third point mentioned in the introduction. world.

ie\Ne strongly believe that, in the future, all these theories of
n?elligence will consolidate in a Great Unification Theory (and
més_ structural feedbaclseems to us a good promising starting
oint), that will let engineers build artificial intelligences with
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ABSTRACT

Engineered systems, whether called intelligent or not, principally
must rely on models te achieve their goals even in the simplest
situations. Therefore, a system’s inteiligence is a consequence of the
cotlective intelligence embodied in its models. In this paper, we
describe intelligence measurement grounded in the generai concepts
of discrete event, model-based system design methodology. We
discuss the basic elements of the approach in view of their role in
intelligence measurement.  Computational resources in both
processing and communication forms are constraints on intelligence,
but they are not detetminant The architectare which configures these
resgurces plays a major role in the intelligence achieved. Further the
architeciure must support fast and frugal heuristics tuned to the
environments in which the system is to operate. Real time processing
architectures built on discrete event modeling and simulation
principles are most suited to support “fast frugal and accurate™
intelligence. Such architectures must be designed with a software
engineering methodology that explicitly sapports a system’s control
of its own computational resources and includes hooks for measuring
its intelligence in terms of the speed, frugality and accuracy of its
Tesponses.

1 INTRODUCTION

Unless we are talking about the affluent life known to many of
us in the recent past, the real world is a threatening
environment where knowledge is limited, computational
resources are bounded, and there is no time for sophisticated
reasoning.  Unfortunately, traditional models in cognitive
science, economics, and animal behavior have used theoretical
frameworks that endow rational agents with full information
of their environments, unlimited powers of reasoning and
endless time to make decisions. Tacitly accepting this
paradigm - as secems the prevalent assumption — does not
provide a promising basis for measuring intelligence, the
theme of this conference.! TIndeed, to measure intelligence
requires first an understanding of the essence of intelligence as
a problem solving mechanism dedicated to the life and death
survival of organisms in the real world. Evidence and theory
from disparate sources have been accumulating that offer
alternatives to the traditional paradigm.

I NIST Workshop on Performance Metrics for Intelligent systems.
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An important crystallization of the new thinking is the
“fast frugal and accurate” (FFA) perspective on real word
intelligence promoted by Todd and Gigerenzer [1]. FFA
heuristics are simple rules demanding realistic mental
resources that enable both living organisms and artificial
systems to make smart choices quickly with a minimum of
information. They are accurate because they exploit the way
that information is structured in the particular environments in
which they operate. Todd and Gigerenzer show how simple
building blocks that control attention to informative cues,
terminate search processing, and make final decisions can be
put together to form classes of heuristics that bave been shown
in many studies to perform at least as well as more complex
information-hungry algorithms. Moreover, such FFA
heuristics are more robust than others when generalizing to
new data since they require fewer parameters to identify.

It is important to note that FFAs are a different breed of
heuristics. They are not optimization algorithms that have
been modified to run under computational resource
constraints, e.g., tree searches that are cut short when time or
memory run out. Typical FFA schemes enable ignorance-
based and one-reason decision making for choice, elimination
models for categorization, and satisfying heuristics for
sequential search. Leaving a full discussion of the differences
to {1], the critical distinction is that FFA’s are structured from
the start to exploit certain restrictive assumptions, such as
skewed frequency distributions, about their input data. They
work well because these assumptions often happen to hold for
data from the real world. Thus FFAs are not generic inference
engines operating on specialized knowledge bases (the
paradigm of expert systems) nor other generalized processing
structures (e.g., [2]) operating under limited time and memory
constraints. An organism’s FFAs are essentially models of the
real environment in which it has found its niche and to which
it has (been) adapted.

New kinds of models for biological neurons provide
possible mechanisms for implementing intelligence that is
characterized by fast, frugal and accurate heuristics. Work by
Gautrais and Thorpe [3] has yielded a strong argument for
“one spike per neuron” processing in biclogical brains. “One-
spike-per-neuron” refers to information fransmission from



neuron to neuron by single pulses (spikes) rather than pulse
trains or firing frequencies. A face recognition multi-layered
neural architecture based on the one-spike, discrete event
principles has been demonstrated to better conform to the
known time response constraints of human processing and
also to execute compuiationally much faster than a
comparable conventional artificial neural net [4. The
distinguishing feature of the one-spike neural architecture is
that it relies on a temporal, rather than a firing rate, code for
propagating information through neural processing layers.
This means that an intemeuron fires as soom as it has
accumulated sufficient input “evidence” and therefore the
elapsed time to its first output spike codes the strength of this
evidence, In contrast to conventional synchronously timed
nets, in fast neural architectures single spike information
pulses are able to traverse a multi-layered hierarchy
asynchronously and as fast as the evidential support allows,
Thorpe’s research team has also shown that “act-as-soon-as-
evidence-permits” behavior can be implemented by “order-of-
arrival” npeurons which have plausible real world
implementations, Such processing is invariant with respect to
input intensity because response latencies are uniformly
affected by such changes. Moreover, coding which exploits
firing order of neurons is much more efficient than a firing-
rate code, which is based on neuron counts [3,4].

Countering the evidence that intelligence is essentially
fast, frugal and accurate is Hans Moravec’s prediction that by
2050 robot "brains™ based on computers that execute 100
trillion instructions per second (IPS) will start rivaling human
intelligence [5]. Underlying this argument is that there is an
equivalence between numbers of neurons in biological brains
and IPS in artificial computers, It takes so many billions of
neurons to create an intelligent human and likewise so many
trillions of IPS to implement an intelligent robot. In strong
form this equivalence implies that pure brute force can
produce intelligence and the structures, neural or artificial,
underlying fast and frugal processing are of little significance.

2 MODEL-BASED INTELLIGENCE AND
MEASUREMENT
In this section, we discuss intelligent systems from three

perspectives; knowledge representation, execution, and
measurement. Specifically, this paper makes the case that*

* The face recognition layered net was execuled by a discrete event
simulator and took between 1 and 6 seconds to recognize a face on a
Pentium PC vs, several minutes for & conventional net on a SGI
Indigo. Recognition performance in both cases was very high, The
anthors employed a training procedure which, while effective, is not
plausible as an in-situ learning mechanism.

* We are not claiming that these are the only elements responsible for
intelligent behavior and by implication there are other means for
intelligence measurement.
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« computational resources in both processing and
communication forms are constraints on intelligence,
but they are not determinant

« the architecture which configures these resources plays
a major role in the intelligence achieved

s the architecture must support fast and frugal heuristics
tuned to the environments in which the system is to
operate :

» real time processing architectures built on discrete
event modeling and simulation principles are most
suited to support FFA intelligence

« such architectures must be designed with a software
engineering methodology that explicitly supports a
system’s control of its own computational resources
and includes hooks for measuring its intelligence based
on FFA standards.

2.1  Computational resources in both processing and
communication forms are constraints on
intelligence, but they are not determinant

Morevac’s claim that artificial intelligence will arise once the
processing power is there to support it can be the starting point
for a serious investigation to understand its merits. On the one
hand, we need yardsticks of intelligence and on the other,
yardsticks of computational resources (presuming that raw IPS
is not very discerning). We might have a diagram as shown in
Figure 1.

Let’s assume for a moment that we have the framework in
the form of a diagram as above, what can we do with it? We
can ask

¢ For a given level of resources, how smart can a system
be? This would prevent us from trying to build systems
that are infeasible with the resources at hand.

s For a given intelligence level, how much resources are
needed? This would help provide cost estimates for
given intelligence requirements.

+ How well does a system utilize its resources? Where
does its intelligence stand relative to the best achievable
in its resource league? Where does its level or resources
stand relative to the best in its intelligence class?



Intelligence

Computation/Communication resources

Figure 1: Intelligence measurement in terms of required
resources

However, the yardsticks for resources and intelligence are
not likely to be single dimensional linear orders but more
likely to be multidimensional, partial orders. Even more to
measure FFA intelligence which is environmeni-dependent,
we may need to condition measurement with respect to
problem classes asking which kinds of problems are
performable on which kinds of architeciures.

2.2 The architecture which configures these
resources plays a major role in the intelligence
achieved

This is a truistn when applied to implementation of standard
functionality —~ certain designs are better than others in
implementing the same input/output behavior. However, in the
absence of a well-defined characterization of intelligence in
terms of input/output behavior, the focus has so far been on
achieving intelligent behavior by whatever means possible,
not paying much attention to the critical nature of the
architectures that can support it. The results of Thorpe
mentioned above, however, suggest that FFA intelligence is
only achieved with “single-spike™ neuron architectures and
would be infeasible if the same neurons were employed in the
manner assumed in conventional connectionist approaches.

2.3 The architecture must support fast and frugal
heuristics tuned to the environments in which
the system is to operate

Generalizing the idea that FFA heuristics embody models of
the environment, the ability to work with models of the
environment, one’s self and others may be taken as key
component of intelligence. Model-based design was formally
introduced around 1980s as the basis to enable systems to
reason about their own behavior in normal as well as abnormal
situations. Over the years, many architectures have been
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proposed and implemented most of which typically suitable
for narrow well-defined domains. However, a generic
architecture based on simulation modeling concepts was
proposed by {6]. Briefly stated, generic model-based design
provides a generally applicable architecture in which
simulation and other engines execute models that embody
what the system employs about its envirenment — both
externat and internal

2.4 Real time processing architectures built on
discrete event modeling and simulation
principles are most suited to support FFA
intelligence

Discrete event models can be distinguished along at least two
dimensions from traditional dynamic system models ~ how
they treat passage of time (stepped vs. event-driven) and how
they treat coordination of component elements (synchronous
vs. asynchronous). Recent event-based approaches enable
more realistic representation of loosely coordinated semi-
autonomous processes, while traditional models such as
differential equations and cellular automata tend to impose
strict global coordination on such components. Discrete event
coneepts are also the basis for advanced distributed simulation
environments, such as the High Level Architecture (HLA) of
the Department of Defense, that employ multiple computers
exchanging data and synchronization signals through message
passing [7]. Event-based simulation is inherently efficient
since it concentrates processing attention on evenis -
significant changes in states that are relatively rare in space
and time — rather than continually processing every
component at every time step.

The DEVS (Discrete Event Systems Specification)
formalism [8] provides a way of expressing discrete event
models and a basis for an open distributed simulation
environment [9]. DEVS is universal for discrete event
dynamic systems and is capable of representing a wide class
of other dynamic systems. Universality for discrete event
systems is defined as the ability to represent the bebavior of
any discrete event model where “represent” and “behavior”
are appropriately defined. Concerning other dynamic system
classes, DEVS can exactly simulate discrete time systems
such as cellular automata and approximate, as closely as
desired, differential equation systems, This theory is presented
in [8, 10]. It also supports hierarchical modular construction
and composition methodology [11]. This bottom-up
methodology keeps incremental complexity bounded and
permits stage-wise verification since each coupled model
“build” can be independently tested.

An abstraction is a formalism that attempts to capture the
essence of a complex phenomenon relative to a set of
behaviors of interest to a medeler. A discrete event abstraction
represents dynamic systems through two basic elements:
discretely occurring events and the iime infervals that separate
them (Figure 2). It is the information carried in events and
their tempaoral separations that DEVS employs to approximate



atbitrary systems. In the quantized systems [8], events are
boundary crossings and the details of the trajectories from one
crossing to another are glossed over with only the time
between crossings preserved.

bound:
:;_a_‘_'Y__.ﬁ. s ,event
3 i
> [
Time { Time
to ¢ross interval |
I
Discrete & 158 A Events and
Event spacing cany
Time . information
Segment T T T

Figure 2: Discrete event representation of contimuous
trajectories

Recent results on discrete event neurons* show that, using
a race analogy, a net of simple discrete event neurons can find
the shortest path in a graph in the shortest time possible. Here
is an instance where fast and frugal is provably optimal! In
contrast, finding the longest path (or a long path) is much
more difficult and requires much more sophisticated neurons.
It seems uncanny — indeed, counterintuitively so that
minimizing performance measures such as distance, time, or
cost requires simple apparatus and can be done with full
accuracy and without backtracking. As with FFA heuristics,
the mystery disolves when one recognizes that the discrete
event neural nets exploit the underlying nature of reality in
which pulses compete in parallel, and where fast competitors
come first and lock out their slower countrparts from further
progress. In the real world, fast response is paramount’ and so
minimizing time (or other meausers mapped into it} is
critically important to survival. So brains may have been
evolved to solve survival-critical problems with frugal means
(simple neurons) that embody race analogies. Finally we note
that discrete event neurons and one-spike-per-neuron
architecutres are necessary to embody the race analogy — other
models do-not work.

2.5 Such architectures must be designed with a
software engineering methodology that explicitly
supports a system’s control of its own

computational resources and includes hoaoks for

4 We are currently writing these results for publication,
% This is certainiy a characteristic of e~commerce at intemet speed.

measuring its intelligence based on FFA
standards

Based on a wealth of basic research in a variety of disciplines,
model-based design offers not only well-defined principles to
design intelligent systems, but also can provide the means to
assess a system from its inception to realization, operation,
and eventual retirement. For example, we can assess a
system’s cotrectness, performance, maintenance, and cost, ali
of which are reflections of a system’s degree of intelligence,
We may also rank a system degree of intelligence in terms of,
for example, intelligence of embodied models and how
inteltigently  physical resources (computational and
conununication resources) are used.

Model-based design suggests several ways to rank
intelligent systems based on their use of models:

¢ Distributed heterogeneous model-based architectures
rank higher than monolithic ones.

e Systems that employ models that are at a resolution
level compatible with the resources available to
interpret them rank above those that don’t.

a Model sets that include self-representation rank
above those that don’t
4 Model sets that inclnde representation of self and
others rank above those that include only self-
representation. :
¢ Other rankings may be based on

O Model abilities to handle both non-linguistic and
linguistic queries

3 System ability to maintain coherence in the
mode] base

O System ability to inform meta-level models by
questioning lower level models

0 Recursive depth of the “models-of” relation.

Due to increasing complexity and size/scale of systems
(e.g., distributed agent-oreinted systems), it is becoming
imperative to follow well-defined software development
processes (e.g., waterfall, spiral, iterative, and/or incremental
process [12]). A typical software development process is
composed of  conceptualization, analysis,  design,
implementation, and testing, and operation [13]. Indeed, the
development of many  contemporary  distributed,
heterogenouos systems must increasingly rely on such

- development processes [14]. Furthermore, with the emergence
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of archiecture-based paradigms, we can begin to devise
suitable architectures for intelligent systems [15]. The
archtiecture based apporach and software development
processes go hand in hand offering many invaluable
advantages such as incremental analysis, design, and testing.
We believe, with the adoption of a synergistic development
process (accounting for software, hardware, and bioware)
combined with an appropriate architectural paradigm, we can
incorporate, among other things, intelligence capabilities,
metrics, and measurement methods in appropriate places.
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Preface

Mimetic Synthesis is a new terminology that more accurately describes a programming
methodology used to mimic human behavior in a computer such as a PC. Previous work
in this field has been incorrectly categorized under various aspects of Artificial Intelligence
(Al).

On Intelligence

Testing and quantifying intelligence is difficult at best, even if it's human intelligence. To
Quote Tarig Samad from “Notes on Measuring Intelligence in Constructed Systems”, “The
difficulty of compressing the multifaceted nature of intelligence into one scalar quotient has
led to proposals to consider intelligence not as one unitary quantity but as a collection of
properties that are mutually incommensurable.” Furthermore, one of the many lessons from
a century of work on human intelligence is that we still don’t really know what intelligence is.

Mimetic Entities

The early mimetic systems developed by Robby Garner are hierarchical in structure. This
allows the “Mimetic Entity” to synthesize the combined behavior of subsystems into a
unified presentation. This structure certainly suggests that one way to measure the
intelligence of such machines is to review the hierarchical concepts it uses and the
processes that contribute to the goals of the whole system.

One of the first hierarchical mimetic synthesizers was called Albert. This program
combined the behavior of several methods that shared the same goal of simulating human
conversation. Each method represents a separate strategy used to form the response to a
human stimulus phrase.

The first method is based on a simple model of behavior, where conversation is
represented by strings of (stimulus - response) nodes. The goal of this particular method
is to find a match for the user’s input stimulus in a database, and form the reply with the
corresponding “response” from the database. If the first method is not successful, the
program follows down the hierarchy from most specific method, to least specific.



The second method looks in a table of Boolean rules and attempts to fit a rule to the user’s
input. If arule is satisfied, its corresponding response is used. The goal of this method is
to satisfy a Boolean expression based on the user’s input phrase.

And so on, the third method attempts to find a generalization about the user’s input phrase
using a “framed” template to determine a match. The goal of this method is to find a
generalization that applies to the user’s input phrase.

Then finally, if none of the other methods has succeeded, a final method selects a “new
topic” from a pool of unused topics. The goal of this method is merely to make a response.
(To change the subject)

So, one can see that the overall goal of simulating conversation is attempted by using a
variety of strategies, all contributing to the main goal. The hierarchical structure ensures
that the best possible response may be used.

It must be obvious that the performance of the mimetic entity with regards to simulating a
conversation depends entirely on the performance of all of these various methods or
subsystems. Yet it depends first and foremost on the person talking to it.

The Loebner Show

But what can we say about Albert’s intelligence? None of the methods used are intelligent,
so their “unified” representation is not intelligent. Albert may be perceived as intelligent by
a human being as is evidenced by the 1998 Loebner Prize Contest, but the program is not
in fact intelligent. http://www.cs.flinders.edu.au/research/Al/L oebnerPrize/

Then if we can know what intelligence is not, does that tell us what intelligence is?

No, because none of the competitors in the Loebner contest have exhibited
intelligence. At best they exhibit a behavior which seems familiar to the

user (judge), and some of them have used very cleaver means to achieve this. But the
ingenuity of the programmer does not make the program intelligent.

One also has to agree that an imitation is not the same as the thing it imitates.
Furthermore, some may object to things that are artificial for no other reason except that
they are artificial. Yet if a thing works, does it matter why it works or what it is made from?
Some people would say that if a thing is not really "intelligent” then it is an impostor, and
therefore “dangerous.” But if a tool performs a job according to specification, why is that
less intelligent than if a human being had performed the same job?

By doing a job, there is at least one goal implied, and that is the completion of the
job. If a computer completes the same job as a human in a smaller amount of
time, we would say the computer has better performance, not better intelligence?



Human Intelligence

In dealing with other people, we assess their intelligence on a casual basis by observing
their behavior, the things they say, their solutions to problems, or other factors, many of
which are purely subjective.

Measuring machine intelligence would be much easier if people could agree on
how to measure human intelligence!

So | think there is always a disparity between "perceived intelligence" and "actual
intelligence”, especially in evaluation of human intelligence. Intelligence is not solely
performance, but is it possible to measure intelligence without also measuring a
performance?

Sometimes a performance involves a great deal of preparation and training. If a man
repeats the same sequence of behavior, practices it over and over until it can be done
repetitively without thinking, is that intelligence?

Summary

The key to true intelligence is the ability of an entity to enlist strategy to accomplish its
mission, not preconceived knowledge, or rote behavior.

Military confrontation is a good example according to R. Neil Bishop. “Time and time
again, superior firepower and resources have been overcome by an inferior force with an
intuitive strategy, which gave them a monumental advantage.”

Also strategy is the key element needed to develop successful research techniques which,
in pure science, may not even exist before the scientist begins. The strategy of obtaining
and integrating knowledge is the key to reaching beyond what is presently known or
understood.

The use of strategy applies not only to the highest level of abstraction, but is also evident in
the “rank and file” subsystems that perform even the most basic tasks required by an entity
as a whole. The strategy or algorithm employed by a programmer may be akin to “instinct”
in some systems. Is instinctive behavior intelligent?
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