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Preface

This volume contains the materials of the Performance Metrics for Intelligent Systems Workshop, held at the
National Institute of Standards and Technology on August 14™ through the 16™, 2000. The central theme of the
meeting was Measuring the Performance and Intelligence of Intelligent Systems. The functioning of intelligent
systems is driven by evaluation of the "success" of assigning and achieving the goals. Both the adequacy of
assigning and the degree of achieving belong to the gray area of measuring performance. How well the system is
designed for achieving its goals, and how effective and efficient the efforts are that its control system produces —
these two issues belong to the domain of evaluating the degree of the intelligence of a system. Neither the system’s
performance, nor its intelligence can currently be adequately measured by evaluation techniques other than those
generally used in control systems. Engineers and researchers are not satisfied with these approaches as they are

applied to intelligent systems.

The Workshop was the first formal gathering of the professionals actively working and/or interested in this area. The
problem is a multidisciplinary one in its essence. Therefore it should integrate both engineers and scientists actively
working in diverse areas such as economics, artificial intelligence, psychology, linguistics, biology, neurology, and
others. Unifying them for solving the problems of measuring performance and intelligence is a formidable problem:

their interaction is the only avenue that can bring to fruition this area of the science of intelligent systems.

This volume starts with the White Paper (Part I) that initiated the process of communication among the
multidisciplinary group of engineers and researchers. The papers, submitted and accepted for presentation are
collected in Part I1. Not all of them could be presented at the meeting because of the difficulties of traveling from all
over the world. They are grouped corresponding to the sub-area of the problem. Notes made by the participants of
the general Panel Discussions are collected in Part III. The decisions of the Advisory Board are presented in Part IV.
Some results of the pre-workshop discussion are put together in the Appendix. We hope that this volume will help to
continue the process of consolidating the efforts and precipitating the results of research and design in this
innovative area of science. We will be grateful for the comments sent to us concerning the problem of measuring the

performance and intelligence of intelligent systems.

We wish to acknowledge the support of the Defense Advanced Research Projects Agency (DARPA) Mobile
Autonomous Robots Software Program. We are also very thankful to our partners and co-sponsors. The workshop
was co-sponsored by the National Aeronautics and Space Administration, the Institute of Electrical and Electronic
Engineers (IEEE), and DARPA, and organized in cooperation with the IEEE Neural Net Council. Our thanks go out
to our Plenary Speakers: H. Szu, G. Saridis, J. Albus, S. Grossberg, and W. Freeman. We are grateful to all the
participants and the very enthusiastic members of the Advisory Panel for their many and significant contributions.

A great debt is owed to Debbie Russell for helping produce the proceedings and Aveline Allen for logistics support.

Editors:
A. Meystel and E. Messina October 23, 2000



Disclaimer
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the National Institute of Standards and Technology nor does it imply that any products mentioned are necessarily the
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PART I
MEASURING PERFORMANCE AND

INTELLIGENCE
OF SYSTEMS WITH AUTONOMY

The White Paper






Measuring Performance and Intelligence
of Systems with Autonomy:
Metrics for Intelligence of Constructed Systems:

A White Paper Explaining Goals of the Workshop

1. Introduction

Thousands of person-years have been devoted to research and development in the various aspects of
artificially intelligent systems. There is no single field of study that contributes to the progress, but rather
several dozens, ranging from control to cognitive sciences. Much progress has been attained. However, there
has been no means of evaluating the progress of the field. How can we assess the current state of the science?
Some systems are beginning to be deployed commercially. How can a commercial buyer evaluate the
advantages and disadvantages of the intelligent candidates and decide which system will perform best for their
application? If constructing a system from existing components, how does one select the one that is most
appropriate within the desired system?

The ability to measure the capabilities of intelligent systems or components is more than an exercise
in satisfying intellectual or philosophical curiosity. Without measurements and subsequent quantitative
evaluation, it is difficult to gauge progress.

It can even be argued that researchers and developers perpetually re-invent the same components to
build their system, unable to reliably find existing components they could reuse. To paraphrase William, Lord
Kelvin: when you can measure something and put some numbers to it, then you know something about it, and
if you can’t your understanding of it is of a 'meager and unsatisfactory kind," although I am not sure that I
would be so adamant about the need for numbers.

It is both in a spirit of scientific enquiry and for pragmatic motivations that we embark on the quest

for metrics for intelligence of constructed systems.

1 This paper is a result of collective efforts to understand the problem, and the future publication based
on this paper will have multiple authors. The draft was written by A. Meystel. Initial editing was done by
J. Albus, E. Messina, J. Evans, D. Fogel, and W. Hargrove. These are the authors of multiple additions to
the initial draft: G. Bekey, H-H. Bothe, B. Chandrasekaran, J. Cherniavsky, A. Clerentin, P. Davis, S.



2. Intelligent Systems (or Agents)

Intelligent systems (that are also frequently called "agents") can be introduced with different levels of
detail. The simplest possible and the most general model of intelligence is just a string of six consecutively
functioning elements forming a loop of closure: WORLD INTERFACE, SENSORS, PERCEPTION, WORLD
MODEL, BEHAVIOR GENERATOR, and ACTUATOR. The loop of closure consisting of these six modules
has a flow of knowledge circulating within this loop and changing its form within each of the modules. It is
possible to demonstrate that if one introduces the concept of intelligent agent in this simple form, a significant
degree of generality is achieved in talking about a single intelligent system as a part of the overall model of
functioning. Let us try to define this loop with knowledge circulation in it, as a scientific entity. The subsequent
description of an Intelligent Agent is relevant to our needs of analysis and design. This is the list of features
characteristic for an intelligent agent.

Feature 1. Intelligence is the faculty of an agent that allows to deal with knowledge and to achieve the
externally measurable success under a particular goal.

Feature 2. The knowledge of an agent is the collection and organization of information units.
Knowledge is presumed to appear as a result of the /earning about the objects of the external world,
interconnections of the objects, and processes of changes produced by the agent within this external world.
These processes are characteristic for all intelligent systems.

Feature 3. The learning process is understood as recording the experiences encountered by an
intelligent system and deriving from these experiences a new set of rules that suggests how the intelligent
system should act under particular circumstances (in a particular situation and under particular goal). Feature
3A. Learning provides for a successful adaptation of agent (intelligent system) to changing environments, e.g.
different algorithms of new rules derivation can be utilized (i.e. algorithms of reinforcement, habituation,
Hebbian association, abstraction, generalization, etc.).

Learning? invokes special metrics that affect the way of judging the performance and intelligence of
systems with learning. In the machine learning community there is a tendency to look at three metrics: the
ability to generalize, the performance level in the specific task being learned, and the speed of learning. From
the point of view of evaluating intelligence, the ability to generalize seems to be the most important one.
Systems can do rote learning, but without generalization, one cannot apply what has been learned to future
situations. Of course, if two systems were equivalent in their ability to generalize, with the same resulting level
of performance, then the one which could do this faster would be "better."

Feature 4. Experiences are understood and stored as triplets of the information units
"situation—>action->new situation" that allow the behavior generation module of the agent to infer what is the
action that is required to improve the situation (evaluation is presumed).

Feature 5. A situation is understood and stored as a complete set of sensor inputs associated with a

particular moment of time in a form that allows for processing. A situation also includes the entire situational

Delaroche, L. Erasmus, D. Filev, L. Fogel, W. Freeman, S. Grossberg, S. Lee, P. Lima, L. Pouchard, A. Schultz,
C. Weisbin, A. Yavnai.



analysis, such as the operating goals, parameters, and hypotheses about external conditions, such as enemy
locations.

Feature 6. All artifacts of learning are evaluated for their desirability according to the criteria of
goodness existing in this particular agent.

Feature 7. Action of an agent results in a complete set of agent motion (or behaviors) that are
developed by actuators of the agent and are sensed by the agent as changes in the external world.

Feature 8. The intelligent system (or the agent) is presumed to be equipped with the relevant sets of
sensors and actuators, with the information storage, an inference system and a device for value judgment that
allows for ranking both the experiences and the rules and determining their preference for the goal of the
system.

One can see that no degree of sophistication is discussed in this setting. All processing is explained as
inference, and various versions of inference will entail different levels of sophistication. One of the important
mechanisms of inference is the mechanism of generalization: An agent is capable of inferring how to find an
appropriate group of objects, how to transform it into a single object, and how to derive the rules for the
generalized object from the rules that were known for its components.

So far, the described system looks very cozy and almost trivial in the very beginning of its existence.
However, as the amount of experiences grows, the complexity of computations grows exponentially and the
efficiency of goal-oriented functioning falls. No respectable agent would allow itself to be overburdened by
growing complexity. This is why the operator of generalization is introduced: agents cannot afford the
complexity of computations. This is the main reason for the emergence of mechanisms of generalization: they
create new objects by the virtue of merging similar objects delivered and utilized by the original set of sensors
and produced by actuatorsS.

These generalized objects form a new world of representation: the one belonging to a lower level of
resolution. As a result, we end up with a multiplicity of interrelated hierarchies of percepts, concepts,
commands and actions. Corresponding multiscale systems of objects form a storage of the World
Representation®. Any functioning actor has this system that provides its functioning.

Feature 9. The goal is the overall assignment to the system that determines the purpose of its
functioning and the preferences that system uses to choose the action, and eventually determines the structure of

its knowledge representation.

2 Contributed by A. Schultz

3 Generalization and abstraction occur on items resident in memory, in an indefinite amount of time. I
reflect on events from last year, yesterday, and this morning, and may detect a pattern I hadn’t noted
before. This may be a higher-level generalization & abstraction than of the immediate kind applied to
sensory inputs.

4 We are familiar with the fact that some researchers disagree with the need for World Representation. It
could be argued that all architectures are equipped by some form of World Representation, albeit under a
different label.



Feature 10. In the system with a multiscale knowledge representation the action determined at the
lower level of resolution becomes a goal for the higher level of resolution. Thus, we are used to the situation
that the goal arrives from the exterior of each level of resolution.

Feature X. The unknown feature.

What this feature is follows from answering two questions that emerge immediately as soon as the first
nine features are introduced:

Question X.1 Who creates the goal for the lowest level of resolution?
Question X.2 Can the goal be formulated internally (at a level of resolution)

The design of increasingly autonomous intelligent agents will also require an end-to-end approach, in
which all the aspects of perception, cognition, emotion, and action are realized in a single system>. Feedback
cycles of information processing need to be designed from perception through action and then back to
perception again, mediated by feedback through the environment. Such cycles of information processing can
evaluate the effects of system performance on the environment, and modify the system where needed to achieve
better environmental control. It has also become clear that, in addition to these externally mediated cycles of
information processing with the environment, internally mediated feedback is needed to achieve autonomous
system properties. Such internal feedback realizes properties of intentionality and attention that are
characteristic of biological intelligence.

Consciousness® might be considered as a possible candidate for interpreting the Feature X. This is one
possible view on the contribution of consciousness as a feature (faculty) of intelligence. Only those creatures
that adequately forecast their environment survive, that is, recognize the dangers and opportunities in time for a
suitable reaction. Since the real world is dynamic and uncertain, having a feature for discovering new ways to
solve new problems should be one of the key features of intelligence.

Consciousness provides a view of the se/fin the context of the immediate environment. As a capability
it did not arise suddenly, but rather, establishes itself at different levels and in different degree. The dog
understands his environment and his place within it with some degree of clarity. We know ourselves and our
environment in more precise terms and can even include unseen elements. I’m conscious of the time of day,
what happened yesterday, what might happen tomorrow, even what’s happening in Serbia without having been
there. It is consciousness that allows manipulations of alternative models of the real world as we understand
them. Here is the basis for dealing with an enormous range of issues as they pertain to survival. The
mechanism of consciousness seems to be the "software" of human intelligence.

The primary problem with respect to consciousness is the underlying algorithmic mechanism. This
subject has received a lot of attention in recent years. The real challenge is to build a mechanism that is
conscious, not simply simulates the behavior of a conscious entity. There is no homunculus within us. The
question emerges, how does perception present itself to us as an integrated entity? How are we capable of

understanding our own consciousness?

5 These observations are taken from the abstract by S. Grossberg
6 Contributed by L. Fogel



A related problem is concerned with "binding." In what manner are the various modalities (vision,
hearing, and the other senses) combined when we now know that vision itself is compartmentalized with
separate perception centers for color, shape, texture, and so forth. How can all this be done in real time? There
are other intrinsic problems that are yet to be faced. An interesting question is, what will a higher level of
consciousness be like, above and beyond what we now have? What if our species grows into something even
more complex with greater intelligence? What would be the nature of self-awareness and understanding of the
world in which it operates? Could a machine facilitate consciousness through some symbiotic relationship?
There are more questions to be asked than answered. What are the links between survival and consciousness?
Consciousness is essential in an n-player game wherein survival depends upon the induced behavior of other
players and your relationship with them. Consciousness presumes a conscious ability. This too is an intrinsic

aspect of intelligence and we expect that it shall be addressed.

3. The Problem of Measuring both Performance and Intelligence

Both engineered and organized - that is, artificially produced - intelligent systems should demonstrate
qualities similar to those demonstrated by living creatures, and especially by humans: ability to work under a
hierarchy of goals, and subgoals ability to perceive the external world and recognize objects, actions and
situations, ability to reason, make decisions, plan, schedule and evaluate the results of actions and learn from
their experiences. These systems are actually Constructed Systems with Autonomy (CSA); we will call them
Intelligent Systems.

Intelligent Systems of interest have both their body and their mind designed by humans (engineers
and programmers); we have to recognize which part of the intelligence is incorporated in their "body" and
which is a faculty of their "mind" (i.e. its intelligent control system). The structure and the characteristics of
the "body" can relax the requirements of the intelligent control system if the results of past experience of
functioning or anticipated future situations are properly incorporated in the design. Proper distribution of
systems’ intelligence between body and mind is a part of engineering design. Different degrees of autonomy
require different degrees of total intelligence, and a different distribution of total intelligence between the
"body" and the "intelligent controller".

Intelligent Control Systems are usually equipped with a system of Perception (Sensory Processing),
Knowledge Representation (where the world model is constructed, frequently in the form of the ontology), and
Behavior Generation (that creates task decomposition, plans and issues commands). As a rule, these systems
are multigranular (multiscale, multiresolutional), and they resolve their problems at various scales
simultaneously.

Multiple existing definitions of intelligence emphasize different facets of this complex phenomenon.
We will follow the definition of intelligence formulated by J. S. Albus in 1991: " intelligence will be defined

as an ability of a system to act appropriately in an uncertain environment, where appropriate action is that



which increases the probability of success, and success is the achievement of behavioral subgoals that support
the system’s ultimate goal"”

Intelligent Systems differ in the depth and the breadth of the "appropriateness" of acting they
demonstrate in different situations. Subsequently, they differ in the degree of "success" they are capable of
achieving. The functioning could be made more appropriate and the level of success could be improved if we
understand how to measure their intelligence. Thus, the measure of intelligence can be frequently reduced to
measuring the "success" of functioning as provided by the ability to develop "appropriate" activities of the
constructed intelligent system. The problem is non-trivial as can be seen from the case study below. We
intentionally have chosen an exotic example since most of the readers can construct much more sophisticated
cases related to unmanned autonomous vehicles, cooperating multilink manipulators, space stations, robot-
companions, etc.

The Albus definition of intelligence is based upon understanding of the term success8. The success of
solving a given task depends on the system’s faculties, plus on some influences, which might be of stochastic
nature or might not be measurable. One group of faculties can be called "the capacity to solve problems" or
intellect. Intelligence includes intellect and, in addition, a number of other faculties that together help to
facilitate the success. These additional faculties of intelligence include a) sensing abilities, b) skills of sensory
processing and image interpretation, c) the capacity to collect, store and organize knowledge, d) the ability to
use knowledge, i.e. via problem solving and decision making processes; the latter includes developing of the
alternatives of plans for future actions, evaluating their preferability and choosing one of them, e) the ability to
transform the decision into actions that lead to a success. Thus, intelligence represents a ’potential ability’ to
solve a given task in good time. A high intellect might compensate for the lack or deficiencies in other
components of intelligence, and vice versa.

Many concepts of measuring intelligence exist. Many were proposed in communications during
preparation of this White Paper. This is what L. Fogel® suggested:

1) Intelligence is measured in terms of the diversity of purposes that can be achieved under the

range of environments. This diversity is usually reflected in the number of dimensions in the
Space of Intelligence (see Section 6). The greater the diversity of purposes/situational constraints,
the greater the intelligence.

2) Measures of performance must be from the point of view of some social entity. Thus, the results

of measuring the degree of success are very relative. Accomplishing a certain task (or range of
tasks) may be of great value to Mr. A, and of little value to Mr. B. There can be no absolute

metric.

77y, Albus, “Outline for a Theory of Intelligence,” IEEE Transactions on Systems, Man, and Cybernetics,
Vol. 21, No. 3, May/June, 1991, pp. 473-509
8 The subsequent consideration of the term success was proposed by H. -H. Bothe

9 From an e-mail message, May 30, 2000



3) The worth of performance must include the cost of the performing. In some cases, this is merely
operational cost, in others its R&D, T&E, acquisition and installation, as well as operations.
Rarely this cost may include removal minus salvage value.

One aspect of this integrated mechanism of intelligence as commonly understood is that the agent
who has it is often able to produce behavior that has a certain reasonableness to it!0. That is, if one knew the
goal of the agent, one might agree that the behavior was oriented to achieving the goal. A. Newell identified
this quality of intelligence as a kind of rationality. He then asked what made the agent successful in achieving
the goal. The answer was: the agent had knowledge and had some ways of using the knowledge for the goals.

The "way of using the knowledge" can be interpreted as and is embodied in the agent’s architecture.
He then noted that sometimes an agents’s knowledge is bound up for use for only certain types of goals. On
the other hand, for some agents, some of the knowledge is available for any goal for which it is potentially
applicable. Chandrasekaran gives an example of a visual system that has knowledge that elements of the
visual scene that have similar velocities probably belong to one object. However, while we "have" this
knowledge in some sense, it is typically not available for us to reason with in our deliberative problem solving.
It is simply hard-wired for use only for certain problems in vision!!.

On the other hand, we know many things explicitly. And as long as our memory doesn’t fail us, we
are often able to use our explicit knowledge for many different goals for which the knowledge is relevant. In
the case of humans, we have a deliberative cognitive architecture that can often retrieve the relevant
knowledge and make it available for the explicit (conscious) problem solving.

A. Newell proposed that an idealized version of an intelligence (in the sense of rationality) would
always use knowledge K if it had it and if it was relevant for a goal. This is purely an architectural
characterization: it doesn’t say anything about what kinds of knowledge are useful. If an agent has a certain
goal, if knowledge K is useful for it, and if it doesn’t have it, the agent of course won’t use the knowledge. But
the agent probably has some other knowledge K’, which may be used to generate asubgoal of identifying the
knowledge needed and maybe acquiring it'2. With the appropriate ways of interacting with the world, the
agent would use knowledge K’ first, and then acquire the knowledge K, and voila, the goal is achieved.

Focusing on the ability to use knowledge for any relevant goal characterized, for A. Newell, is an
extremely important aspect of intelligence. We would like to notice that one more faculty of intelligence is

involved: namely, focusing attention, which is frequently used by the agent in its search activities.

10 This discussion of the interpretation of the term intelligence was contributed by B. Chandrasekaran

1T While this thought is powerful and probably correct, the example is not particularly persuasive. It is
hard to say whether this knowledge is utilized by the subject that visualizes the scene. One might assume
that we group the adjacent points together into one object not because they have the same speed but, on
the contrary, we deduce that they have the same speed because they belong to the same object. The
grouping for declaring the fact of “belonging to the same object” might be done by the virtue of spatial
adjacency no matter what the speeds of the points actually are.

12 This formidable conjecture is based upon an assumption that the agent somehow knows that by
achieving a subgoal, knowledge about how to achieve the main goal will be acquired. Given the current
state of practice, it would be more natural to assume that a problem solving intelligence should be
equipped by a faculty of searching, and in situations where knowledge is lacking, it develops a set of
searching activities.



This sense of intelligence goes against a common intuition in which intelligence is associated with
having the knowledge rather than the ability to use the knowledge you have to acquire the knowledge (i. e. to
focus attention and search). Later, we will discover that when we focus our attention and get engaged in
searching, usually we end up with finding groups of similarity and create clusters!3 — objects of the lower
resolution.

Newell’s definition deserves our attention because it captures one sense of the term in a way to which
some sort of metric may be attached. Purely reactive machines -- which map their perceptions directly into
actions, such as the thermostat -- are on the low end of the scale. Further up are machines that can map from
perceptions to actions by considering a large but precompiled number of alternative paths that are constructed

by grouping, while groups are found by search and focusing attention.

4. A Case Study: Artificial Climate System

In an Artificial Climate System, it is required to maintain the temperature of the air in the controlled
rooms within some interval of temperature ©° (with some accuracy AO®°), and provide the value of humidity
within some interval of 4 (with some accuracy Ah) for a particular moment of time ¢. In addition, the Artificial
Climate System should keep some function within some interval F(O °, A © °, h, Ah, 1)< AF experimentally
determined to be preferable for a human being. In this case, the goal pursued by the system is not a particular
state S(O °, A O ° h, Ah, t) but is rather an unknown function F,(©°, A O ° h, Ah, )< AF.

This problem is rather a nontrivial one. It can be compared with a problem of welding control where
the function of the seam quality is very complicated and typically unknown since it depends on many factors,
some of them hard to measure, or even evaluate. Generally, the problem is similar to the problem of optimum
control of all multivariable stochastic controllers with incomplete available information that do not pursue a
particular state but rather being within an interval of some cost-function. The explicit or implicit ability of a
system to generalize might be crucially important for providing a proper functioning of the system and maintain
the proper climate to the full satisfaction of the user.

Even more complicated functioning can be expected if this cost function is unknown, and the system
of Artificial Climate should learn it by observing the behavior of the human user. This would require observing
how many times the human user was turning "on" or "off" the ventilator, how many times the user was turning
"on" or "off" the cooling unit, the humidifier, and what were the measures of temperature and humidity at these
moments in the room. A simplistic automated system might be confused, but an intelligent system with
elements of learning will pursue a mutually satisfactory schedule of functioning for all interrelated subsystems.
The system will in fact learn the climate related "personalities”" of the users and will learn to recognize who
demands what and when. Even more bold generalizations could be expected if the system can correlate the
user’s behavior with the readings of temperature and humidity outside (not only inside!).

The goal of this learning process should be reduction of the amount of human intervention — that is,

increasing the autonomy of the system. If the human-user needs to tune the system less frequently, this would

I3 One of the elements of new knowledge generation.
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mean that the system works better. An even more interesting situation might happen if there is more than one
user, and different users have different policies of tuning the system up, i.e. multiple users have different
propensities in intervening with the Artificial Climate System. The Artificial Climate System that would
minimize the total number of cases of human intervention would be considered a system for achieving
consensus in a particular multi-player game.

A further development of this system might be required if the owner of this particular hotel wants
actually to reduce the cost of energy required for keeping the customers satisfied. Then, the system can be
designed so that it will learn habits of the customers to keep their average number of complaints below some
particular level, while the energy consumed will be minimized. We can see that all these systems have a pretty
high degree of autonomy: they autonomously assign the schedule of subsystems functioning. On the other hand,
these systems are subserviently autonomous, i. e. they control their own behavior but the goals are totally
determined from the external user.

The solution of this problem might be different for the systems that have a sense of self. A system may
be considered to have a sense of self if it is equipped to take into consideration its own interests or advantage —
and generate goals and success criteria for itself. Initially, we consider a set of regular obedient controllers that
are intelligent (to a degree) but do not have any self, yet. The system equipped with a self, will try to keep all
sources of assignment satisfied (including customers and the hotel owner) while worrying primarily about
enhancement of its own life span (reducing aging, increasing reliability, and so on). In other words, a further
development of the system presumes its self-evolving and self-improving.

This Artificial Climate System with elements of autonomy can be qualified as an intelligent one. It
definitely should have elements of learning, should have an ability to recognize phenomena of the external
world that are required for its functioning, must use elements of deductive and inductive reasoning, and must
generalize upon the input information and the results of its own functioning. We can see that the "intelligence of
the system" can grow, as the goal of functioning grows in its dimensionality and levels of detail. We can judge
the degree of intelligence by the breadth and depth of the goals that are achieved and the performance measures
that are satisfied. We are not only interested in evaluating the correspondence between the goal and
performance criteria on one side and the degree of intelligence on another side. We are interested in tools that

allow for the growth of intelligence and more adequate satisfaction of the assignment.

5. The System Specifications and Vector of Performance (VP)

One specific property of intelligent systems is lack of knowledge about the future conditions of
functioning. The list of variables is incomplete, the intervals of future parameter changes are uncertain, the
goals to be pursued can be formulated only in general. Lack of clarity in design specifications calls for design
redundancy which amounts to the need for autonomously compensating for uncertain control specifications and
vaguely specified contingencies.

The system requirements identify the characteristics which the Intelligent System (e. g. unmanned

ground vehicle) must possess. The choice of the specific components from the Tools of Intelligence (see the
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subsection on that topic) mandates which of the following capabilities are included to satisfy the specific system
requirements:

e to recognize objects, actions, situations

e to infer from the recognized elements of the scene

e to search for a required object within a scene

e to remember scenes and experiences

e to interpret situations

e to evaluate objects, actions, situations, and experiences

e to learn new skills from positive and negative experiences

e to generalize upon recorded similarities and acquire new concepts

e to detect an unfamiliar object, label it, and then learn about it

e to communicate with humans and other intelligent systems

e  to collaborate with humans and other intelligent systems

e to interpret its own behavior

e to adapt to new environment

e  to interpret behavior of other intelligent systems

e to properly generate a solution in an unexpected situation

e to perform task decomposition

e to plan and schedule in time planned activities

e to support all modes of planning/control required.

Other system requirements can be deemed pertinent to the general architectures of intelligent systems.
It seems practical to construct the Vector of Performance (VP) for each of the subsystems in full
correspondence with the subsystem’s specifications. We always know quantitatively what the outputs of interest
are. The set of these outputs forms the target vector VPr. Within the space of performance there corresponds to
some particular area: the zone of performance determined by the set of specifications. After testing the real i-th
system or systems we receive a real vector or set of vectors {Vi} that are supposed to be compared with VPr.

The result of this comparison is the result of measuring a concrete V; by determining the degree of its
belonging to the zone of the performance space occupied by VPr. Note that this is not a standard single-
dimensional conventional measurement when a particular unit of measurement is introduced. Rather, this is
determining the membership function in a class.

The mathematics of comparison does exist. It is not frequently applied to the realistic cases because it
is not frequently requested by the professionals who are responsible for the evaluation and comparison of
complex systems. However, for some particular subsystems the comparison between {V,} and VPr is a
common practice. We refer to the area of control systems where many comparison metrics have been
developed. Some additional effort would be required to apply a similar approach for more general and difficult
cases but this effort is within our reach.

In the area of intelligent systems, an additional difficulty is expected linked with the fact that a

concrete system is always a hierarchy of subsystems. For each particular subsystem chosen within a concrete
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research and/or industrial domain, the comparison between {V;} and VP is well understood. However, not
much thought was given yet to the mathematics of integrating V; and VPt of subsystems into V; and VPr of the
overall system. We are optimistic about development of the appropriate techniques. In many real situations, this
has been done in practice. It would be appropriate to expand the experience from real situations to the general

theory of (hierarchical) vector comparison since real situations affect the architectural issues in a more relevant

manner.

6. Intelligence, Goals Hierarchy, and Arbitration

A device with a very low level of "intelligence," can perform its duties and achieve the goals in an
excellent way within the boundaries of its "obtuseness." Yet, a very intelligent device with the ability to make
powerful generalizations of the available information, capable of performing a sophisticated processing of this
information and generating new concepts often cannot perform the task as well as a simple "obtuse" device, for
example, maintenance of the temperature in the room within a concrete interval. This very intelligent device
starts interfering with the level of humidity, looks for correlation links between recent commands of the human
operator, and doing other things that the user does not need. Thus the user response: what is the merit of
"intelligence" if the job has not been done or has not been performed in a timely manner (i. e. within the
specified concrete interval)? Similar things happen with humans when an overeducated person is assigned for a
simplistic job.

Intelligent behavior is characterized by flexible and creative pursuit of endogenously defined goals!4.
It has emerged in humans through the stages of evolution that are manifested in the brains and behaviors of
other animals. Intentionality is a key concept by which to link brain dynamics to goal-directed behavior. The
archetypal form of intentional behavior is an act of observation through time and space, by which information is
sought for the guidance of future action. Sequences of such acts constitute the key desired property of free-
roving, semi-autonomous devices capable of exploring remote environments that are inhospitable for humans.
Intentionality consists of the neurodynamics by which images are created of future states as goals, of command
sequences by which to act in pursuit of goals, of predicted changes in sensory input resulting from intended
actions (reafference) by which to evaluate performance, and modification of the device by itself for learning
from the consequences of its intended actions. Imagination images, i. e. the images of the future states produced
by the planner and/or the predictor, or the results of simulation can be produced in the form in which the SP
system would see if the actions were carried out, or in a symbolic form of topographical map representation (at
the lower resolution), or even in a descriptive form (at the lowest level of resolution).

Intelligent Systems are to be used in cases that are too complicated for using simple controllers;
otherwise simple programmed and/or automated devices should be used. A notion of closed vs. open systems
should be introduced that is relevant to the situations where programmed vs. intelligent devices can be utilized.

Closed systems can be characterized by having a clear assignment of the problem to be solved, and a crisp

14 From the abstract submitted by W. Freeman
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ability to be characterized by a complete list of concrete user specifications in the terms of measurable
variables. These are the cases where using an intelligent system is excessive.

On the contrary, in an open system:

e the problem is not totally clear

e its parts are not concretized; decomposition is not obvious

e the variables are not listed in the beginning of design process

e many variables will emerge during the process of functioning

e the methods of their observations and registration are not known a priori
e many rules of action should be learned during the process of functioning.

So far, we can indicate two diametrically opposite strategies exercised by intelligent systems: one
strategy is characterized by a very long-term general goal, say, survival of a system, another by a set of short
term particular goals. The strategy of survival demands that intelligent systems be able to adapt to the
environment and all circumstances. The strategy of "adapting no matter what" determines particular laws of an
intelligent systems’s functioning. The other strategy is "following particular goals" no matter what. The latter
strategy frequently leads to the destruction of the system at hand: it might perish while following its goals
persistently. Adaptation is not possible under the second alternative of intelligent systems since adaptation
demands a compromise of the particular short term goals that the system was assigned.

There is an intuitive feeling that the systems with the second strategy are somehow better, or preferable
than the systems that adapt no matter what. However, this intuitive feeling is difficult to rationalize and explain.
Obviously, these goals belong to different levels of granularity (scale, resolution) and they can be reconciled
only by considering the larger scope of the situation. Following the particular goal no matter what may lead to
the destruction of this particular system but will provide for survival of the rest of the team of intelligent
systems (e.g. a squad of unmanned autonomous vehicles; in other examples analogous situation takes place, i.e.
as the problem gets complicated, the solution moves to the domain of multiagent solutions).

Therefore, these two strategies can be compared with respect to some additional criterion that has a
higher priority than "just survival", or "just pursuing the goal." One of such external criteria is that of
"knowledge acquisition." Under this criterion, one should carefully analyze the very intention to survive while
abandoning the goal, or an intention to achieve the goal, even if the perspective of being destroyed is actually an
imminent one. Both intentions might turn out to be secondary issues if the rate of knowledge acquisition is at
stake, and in one case this rate was higher than in another. Indeed, one can adapt to the details of surrounding
environment even without knowing the broader world.

In the meantime, while the system is studying the world and ardently acquires knowledge of it, the
model of the world evolves so much that a simple adaptation is merely impossible!®, and the survival is
achieved for the system that has evolved. Negotiation is a powerful tool that allows for adjusting the intentions
(toward the goal achievement) to the rational evaluation of the losses that might occur if the goals are pursued

persistently and incessantly.
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The possibility of negotiation and arbitration generates more complex scenarios!®. Assume an agent
"wins" a particular negotiation at a given time. It would also allow for (but not require) that the tie-breaking
arbitration assures that all of the goals are brought to the attention of negotiating parties over time. The
arbitrator might want to make sure that a given agent wins "something," especially after losing out several
times. Or, in goal terms, the arbitrator might be concerned about maintaining a balance "in portfolio terms". If
there were goals associated with efficiency and discovery, the arbitrator might keep track of how cumulative
efficiency and discovery supplement the awards of goals achievement. If, as the result of a number of decisions
over time, efficiency was always winning out, and the locker of discovery items was empty, then the arbitrator
could adjust his tie-breaking rules. This means that autonomous intelligent agents should not always try to be
(locally) efficient, especially if they are equipped with learning.

On the other hand, we may be getting intelligences and goals of our agents mixed up. Suppose that
there is a set of goals (G,...G,). Different agents might have different pure goals, or they might put different
weights on the various goals. Further, they might be better or poorer at pursuing those goals in differing
contexts. That is, they might have different components of intelligence (1,1,,..Is) and these would be more or
less important in the different contexts (C;,...C,). Indeed, a human may value beauty, order, material things,
family, and learning new things, just to mention a few items.

This human might be very good at aesthetic matters and family matters, but not so good at order and
material things. The agent might be good at trying and learning about new aesthetics-related things, but poor at
doing anything risky. It is typical for humans to have a portfolio of "intelligences" as well as "goals." It would
give some value to all the different goals, and would have some value to each dimension of intelligence.
Another human might be characterized as an explorer, although he would value family and wealth to some
degree--just not as much as new discoveries. Yet a third might be an explorer in search of tidiness (e.g. a
scientist). What do you think, which human will do better? It depends. An unequivocal answer might be
impossible at a single level of resolution because the true result depends on the distribution of the types of

agents and the contexts that the groups of agents find themselves in.

7. What Constitutes the Vector of Intelligence (VI)?
We are still in limbo about what we should measure to evaluate intelligence: the mysterious Vector of
Intelligence (VI), or the system’s success as attributable to its intelligence. (The need to construct a VI emerges

in many areas.)

For example, the problem of the appropriate degrees of generalization, granularity, and gradations of
intelligence occurs in ontology development!”. What constitutes the appropriate scope and levels of detail in an

ontology is practically driven by the purpose of the ontology. The ability to dynamically assume one level of

15 Adaptation is understood as a mere parametric adjustment while the evolutionary changes in the
structure of a system are results of learning.

16 Contributed by P. Davis
17 Submitted by L. Pouchard

15



detail among many possible details is important for an intelligent system. It might depend on the purpose of a
system. In that sense the long term purpose of the system is different from its short term or middle term goals.
Clearly, the long term purpose and the multiple term goals are goals belonging to different levels of resolution
and should be treated in this way. This brings us back to the measures of intelligence through success: is
intelligence to be measured by the ability of a system to succeed in carrying out its goals?

The term "success" is a key word in the Albus definition, because it becomes a source of emerging
gradations in intelligence, the degrees of intelligence depend on the essence of the definition of the word
success. This means that if success is defined as producing a summary of the situation (a generalized
representation of it), the summary can be computed in a very non-intelligent manner especially if one is dealing
with a relatively simple situation. Indeed, in primitive cases, the user might be satisfied by composing a
summary defined as a "list of the objects and relationships among them" i.e. a subset of an entity-relational (ER)
network!®. On the other hand, the summary can be produced intelligently by generalizing the list of objects and
relationships to the required degree of quantitative compression with the required level!® of the context related
coherence. Thus, success characterizes intelligence if the notion of success is clearly defined.

The need in gradations of intelligence is obvious: we must understand why the probability of success
increases, because somebody is supposed to provide for this increase, and somebody is supposed to pay for it.
This is the primary goal of our effort in developing the metrics for intelligence. The problem is that we do not
yet know the basis for these gradations and are not too active in fighting this ignorance. What are these
gradations, how should they be organized, what are their parameters that should be taken into account? We can
introduce parameters such that each of the parameters affects the process of problem solving and serves to
characterize the faculty of intelligence at the same time.

The following list of 25 items should be considered an example of the set of coordinates for a possible
Vector of Intelligence:

(a) memory temporal depth

(b) number of objects that can be stored (number of information units that can be handled)

(c) number of levels of granularity in the system of representation

(d) the vicinity of associative links taken into account during reasoning of a situation, or

(e) the density of associative links that can be measured by the average number of Entity-
Relation (ER)-links related to a particular object, or

(f) the vicinity of the object in which the linkages are assigned and stored (associative depth)

(g) the diameter of associations ball (circle)

18 See the summaries produced by the search-engines on the Web: to have it “quick and dirty” the first
sentence, or the first 5 lines of an article is considered to be a summary, why not?

19 Summarizing an article (in unstructured natural language), if done properly, is a result of generalizing
the natural text description and transforming a narrative from one level of resolution by a narrative from

another level of resolution.
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The association depth does not necessarily work positively, to the advantage of the system. It can be
detrimental for the system because if the number of associative links is excessively large the speed of problem
solving can be substantially reduced. Thus, a new parameter can be introduced

(h) the ability to assign the optimum depth of associations
(This is one more example of recognition that should be performed, in this case, within the knowledge
representation system).

Functioning of the behavior generation module evokes additional parameters, properties and features:

(i) the horizon of planning at each level of resolution
(j) the horizon of extrapolation at a level of resolution
(k) the response time
(This factor should not be confused with a horizon of prediction, or forecasting which should combine
both planning and extrapolation of recognized tendencies).
(1) the size of the spatial scope of attention
(This corresponds to the vicinity of the associative links pertinent to the situation in the system of knowledge
representation)
The following parameters of interest can be tentatively listed for the sensory processing module:
(m) the depth of details taken into account during the processes of recognition at a single level of
resolution
(n) the number of levels of resolution that should be taken into account during the processes of
recognition
(o) the ratio between the scales of adjacent and consecutive levels of resolution
(p) the size of the scope in the most rough scale and the minimum distinguishable unit in the
most accurate (highest resolution) scale

It might happen that recognition at a single level of resolution is more efficient computationally than if
several levels of resolution are involved. A finer system of inner multiple levels of resolution can be introduced
at a particular level of resolution assigned for the overall system (e.g. Burt’s pyramids??). The latter case is
similar to the case of unnecessarily increasing the number of associative links during the organization of
knowledge.

Spatio-temporal horizons in knowledge organization as well as behavior generation are supposed to be
linked with spatio-temporal scopes admitted for running algorithms of generalization (e.g. clustering). Indeed,
we do not cluster the whole world but only the subset of it which falls within our scope. This joint dependence
of clustering on both spatial relations and the expectation of their temporal existence can lead to non-trivial
results.

One should not forget that generalization (the ability to come up with a "gestalt" concept) is conducted
by recognizing an object within the chaos of available spatio-temporal information, or a more general object

within the multiplicity of less general ones. The system has to recognize such a representative object, event, or
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action if they are entities. If the scope of attention is too small, the system might not be able to recognize the
entity that has boundaries beyond the scope of attention. However, if the scope is excessively large, then the
system will perform a substantial and unnecessary job (of searching and tentatively grouping units of
information with weak links to the units of importance).

Thus, any system should choose the value of the horizon of generalization (that is the scope of the
procedure of focusing of attention) at each level of resolution (granularity, or scale).

All of these parameters characterize the realities of the world and the mechanisms of modeling that we
apply to this world. These parameters do not affect the user’s specifications of the problem to be solved in this
system. The problem is usually formulated in the terms of hereditary modeling that might not coincide with the
optimum modeling, or with the parameters of modeling accepted in the standard toolbox of a decision-maker.

The problem formulated by a user often presumes a particular history of the evolution of variables
available for the needs of the intelligent system. Simultaneously, the user requests a particular spatio-temporal
zone within which the solution of the problem is desirable. However, the input specifications often do not
require a particular decomposition of the system into resolution levels and the intelligent system is free to select
it in an "optimal" way. In other cases, the user comes up with an already existing decomposition of the system
that appeared historically and must not be changed (like the organizational hierarchy of a company and/or an
Army unit). Sometimes, it is beneficial to combine both existing realistic resolution levels and the "optimal"
resolution levels implied by the optimum problem solving processes.

The discrepancy between these decompositions requires a new parameter of intelligence
(q) an ability of problem solving intelligence to adjust its multi-scale organization to the
hereditary hierarchy of the system, this property can be called "a flexibility of intelligence";
this property characterizes the ability of the system focus its resources around proper
domains of information.
In the list of specifications of the problem the important parameters are
(r) dimensionality of the problem (the number of variables to be taken into account)
(s) accuracy of the variables
(t) coherence of the representation constructed upon these variables
For the part of the problem related to maintenance of the symbolic system, it is important to watch the
(u) limit on the quantity of texts available for the problem solver for extracting description of the
system?!
and this is equally applicable for the cases where the problem is supposed to be solved either by a

system developer, or by the intelligent system during its functioning.

20p . Burt, “Multiresolution Techniques for Image Representation, Analysis, and ‘Smart’ Transmission,”
SPIE Conference 1199: Visual Communications and Image Processing IV, Philadelphia, Nov. 1989.

21 Most of the input knowledge arrives in the form of stories about the situation. These stories are
organized as a narrative and can be considered rexts. In engineering practice, the significance of the
narrative is frequently (traditionally) discarded. Problem solvers use knowledge that has been already
extracted from the text. How? Typically, this issue is never addressed. Now, the existing tools of text
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(v) frequency of sampling and the dimensionality of the vector of sampling
Finally, the user might have its vision of the cost-functions of his interest. This vision can be different

from the vision of the problem solver. Usually, the problem solver will add to the user’s cost-function of the
system an additional cost-function that would characterize the time and/or complexity of computations, and
eventually the cost of solving the problem. Thus, additional parameters:

(w) cost-functions (cost-functionals)

(x) constraints upon all parameters

(y) cost-function of solving the problem

This contains many structural measures. We need to trace back from an externally perceived measure
of "success" or intelligence to a structural requirement. E.g, the construction codes specify thickness of
structural members, but these dimensions are related to the amount of weight to support — the performance goal
is the lack of building collapse.

Important properties of the Intelligent Systems are their ability to learn from the available information
about the system to be analyzed. This ability is determined by the ability to recognize regularities and
irregularities within the available information. Both regularities and irregularities are transformed afterwards
into the new units of information. The spatio-temporal horizons of Intelligent Systems turn out to be critical for
these processes of recognition and learning.

Metrics for intelligence are expected to integrate all of these parameters of intelligence in a
comprehensive and quantitatively applicable form. Now, the set {VI;j} would allow us even to require a
particular target vector of intelligence {VIr} and find the mapping {VIt}=> {VI;} and eventually, to raise an
issue of design: how to construct an intelligent machine that will provide for a minimum cost (C) mapping

[{VPr}> {VI;}]2>min C.
By the way, has this ever been done for the systems that are genuinely intelligent? Of course,

this question is not related to design, just to measurement.

8. The Tools of Computational Intelligence

Proper testing procedures should be associated with the model of intelligence presumed in the
particular case of intelligence evaluation. It seems to be meaningful to compare systems of intelligence that are
equipped with similar tools. In this section we introduce the list of the tools that are known from the common
industrial and research practice of running the systems with elements of autonomy and intelligence. It is also
expected that these tools can be used as components of the intelligent systems architectures. Thus, they might
help in developing and applying types of architectures that will be used for comparing intelligence of systems.

The following tools are known from the literature as proven theoretical and practical carriers of the

properties of intelligence:

¢ Using Automata as a Generalized Model for Analysis, Design, and Control

processing allow us to address this issue systematically and with a help of the computer tools of text
processing.
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e Applying Multiresolutional (Multiscale, Multigranular) Approach
1. Resolution, Scale, Granularity: Methods of Interval Mathematics
2. Grouping: Classification, Clustering, Aggregation
3. Focusing of Attention
4. Combinatorial Search
5. Generalization
6. Instantiation
¢ Reducing Computational Complexity
¢ Dealing with Uncertainty by
e Implanted compensation at a level (feedback controller)
e  Using Nested Fuzzy Models with multiscale error representation
e Equipping the System with Knowledge Representation
e Learning and Reasoning Upon Representation
e Using bio-neuro-morphic methodologies
¢  General Properties of Reasoning
Quantitative as well as qualitative reasoning
Generation of limited suggestions, as well as temporal reasoning
Construction both direct and indirect chaining tautologies (inferences)
Employing non-monotonic as well as monotonic reasoning
Inferencing both from direct experiences as well as by analogy, and
Utilizing both certain as well as plausible reasoning in the form of
1. Qualitative Reasoning
Theorem Proving
Temporal Reasoning
Nonmonotonic Reasoning
Probabilistic Inference
Possibilistic Inference
Analogical Inference

Plausible Reasoning: Abduction, Evidential Reasoning

© P N s W

Neural, Fuzzy, and Neuro-Fuzzy Inferences
10. Embedded Functions of an Agent: Comparison and Selection
Each of the tools mentioned in the list allows for a number of comprehensive embodiments by using
standard or advanced software and hardware modules. Thus a possibility of constructing a language of

architectural modules can be considered for future efforts in this direction.



9. The Architectures of Intelligence

Listings of all tools of computational intelligence presently available and all properties of intelligence

measurable would not characterize the system exhaustively and would not suggest how to test the system. How

these tools are attached to each other — this is what matters! It turns out that the architecture of the system can

be decisive in providing active features of various intelligent systems.

Architectures of intelligent systems should support:

Expected long-term mission planning (e.g. overall path planning and replanning for the
whole mission performance)

Various principles of knowledge representation

Navigation, guidance and motion control with self-orientation using a set of techniques
specified by the mission

Aucxiliary activities which require using additional intelligent control systems (e.g. for
manipulator arms installed at the mobile autonomous platform)

Ability to acquire the data, which characterize and quantitatively measure mission
performance

Perception capabilities: the character of the architecture will be strongly affected by the
characteristics of all the sensors to be installed on-board of the autonomous intelligent

system (for example, the unmanned ground vehicle); its intelligence will be affected by

the designer’s decision regarding what particular vision and other off-the-shelf

perception systems are to be implemented, what is the level of human supervision?2
expected in the system (full autonomy, partial teleoperation, full teleoperation, etc.)
Ability to handle sensing, data-processing, and decision making (including planning,
navigation, guidance, and control), dealing with uncertainties, especially while operating
in the uncertain environment

Ability to respond to changes in the environment or its self-state without requiring
human intervention.

Ability to optimize performance based upon some cost-function (e.g. minimum time of
task execution, minimum energy consumption, minimum final error of performance,
minimum risk of being detected and/or destroyed?3)

Multi-robot (multi-vehicle, multi-system) coordination

Robot-supervisor interaction (in a multi-robot case this may entail robots-supervisor

interaction, robots-supervisors interaction?4, etc.)

22 A human supervisor will directly or indirectly assist the function of perception of the first group of
unmanned ground vehicles.

23 Often, all five of these factors are important: in this case weights must be assigned. However, some
theoretical difficulties should be overcome before using this case in practice.

24 In addition to the question: how should the interaction proceed among the members of the robotic
team. One can ask a similar question about the team of human operators supervising the robotic team.
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e Ability to perform a variety of tasks (e.g. in the case of unmanned vehicles, the ability to
perform travel, reconnaissance operations, mine neutralizing, etc.)

e  Fault-tolerant, reliable, and robust operation

e Measurable architecture performance both qualitatively and quantitatively?

o Extensibility for improvements and adaptation to mission specifics

Other information processing functions will probably need to be supported but those listed above most
strongly affect the choice of architectural approaches. It is especially relevant in the cases where we are
explicitly talking about dealing with knowledge.

The first group of these implicit architectural matters®® includes principles of knowledge
representation accepted in a particular intelligent system. A case could be made for semantic-based knowledge
representation, including tests for completeness and consistency. Although the theories for such tests exist (e.g.
Process Specification Language (PSL’s) completeness and consistency can be proved within situation calculus).
The breadth and scope of knowledge represented in a knowledge representation system also determines and
conditions its possible re-use. Perhaps re-usable devices and software processes should be considered, since
such processes potentially decrease costs of further systems. One might expect that re-usability criteria could
be required for characterizing the intelligence.

Another group focuses more explicitly on ontologies that demonstrate the results of generalization
within the stored linguistic information. Ontology development aims at building a machine-readable semantic
layer within a (software) system. Ontologies formally express the knowledge contained in an application by
providing definitions for concepts, relations and functions, as well as rules for constraining the use of the terms.
Ontologies contain definitions for metadata and rules that constrain the interpretation and use of metadata.
Ontologies can represent relations of inheritance, aggregation and instantiation.

Ontology development supports system interoperability by solving problems related to semantic
ambiguities, and by enabling semantic communication between software agents. Software agents may refer to a
common ontology to exchange messages. Actually, ontologies do not carry anything different in principle from
all hierarchical constructions within the knowledge base. However, they present it in a language form, for some
ontologies even in a natural language form. This opens an opportunity to communicate with large and
“interdisciplinary" knowledge bases in natural language.

Providing translation mechanisms for the interoperability of applications requires that applications
share a common ontology or that application concepts can be represented in a formal, declarative manner. Other

benefits of ontologies include reliable system specifications, accurate data and metadata descriptions, and

25 This requirement should not be confused with the functional requirement of measurability of

performing a particular function, and/or the overall mission such as time of arrival, or fuel consumed, or
percentage of mines neutralized. Here we are talking about performance of the architecture that should

be measured in terms of performing intelligent control operations (e.g. computations per alternative of
solution, goodness of solutions found, etc.). 2

26 Submitted by L. Pouchard



development of common data formats for collaborative analysis. Ontologies that exist for specific tasks or

domains permit knowledge sharing and re-use within the domain.

The scales and scalability criteria critical for intelligent systems are represented within ontologies, too.

10. Supervisory Control and Data Acquisition
Supervisory Control and Data Acquisition involves data collection, active communication with the
user, and display. This is a group of separate subsystems (actually, several levels of the architecture) within the
intelligent controller. These subsystems can be equipped by additional control loops and a separate knowledge
organization system required for communication. The purposes of these subsystems are:
e to prepare information relevant to the needs of corresponding levels of control and command
e to convey this information to the user or the supervisory controller
e to conduct the dialog with the corresponding level of control and command
e to display all the information in a user friendly form e.g. use of graphics, use of previously
negotiated modes of demonstration and protocol of explaining the ongoing activities
e to provide alarming, warning, notification both to other subsystems as well as for the
external levels of control and command
e to provide for security by allowing different levels of control and command with different
privileges.
e to facilitate printing and reporting functions, storage and display of historical data to

facilitate investigation of events, investigation, and other types of analysis.

11. Tests of Machine Intelligence Contemplated in the Past

1. The Turing test, or imitation game was proposed by A.Turing in 195027 In one version of this test
a human judge interrogates a program through an interface. If the program can fool the human into believing
that responses come from another human and not from a computer then the program should be considered
intelligent. Clearly, in this test we don’t talk about intelligence as a phenomenon but rather about an ability of
pretending to be intelligent. At the present time, such an approach seems to be a naive one: it determines what
seems to be intelligent rather than what is intelligent.

Nevertheless, this approach has generated a lot of literature, in particular the famous problem of
Chinese room?8. J. Searle considers the following mental experiment. A person was given a set of formal rules
for manipulating Chinese hieroglyphs. This person does not speak or understand written Chinese, and he does
not know the meaning of these hieroglyphs, he just can distinguish them visually?. The rules state that if a

symbol of a certain shape is given to him, he should write down another particular hieroglyph on a piece of

27 A. Turing, “Computing Machinery and Intelligence”, Mind, Vol. 59, No. 236, October, 1950, pp. 433-
460
28 . Searle, (1980) "Minds, Brains, and Programs", Behavioral and Brain Sciences,
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paper. The rules prescribe how the groups of hieroglyphs should correspond one to another. When a set of
Chinese symbols enters from outside, the person applies the rules, writes down a set of other Chinese symbols
as specified by the rules, and returns the result to the external observer. The external observer perceives the
result as a grammatically correct answer in Chinese. However, the person inside does not understand Chinese.
(Note that the very possibility of conducting this experiment in reality is questionable: the list of required rules
would be prohibitively large if the scope of questions and required answers covers a broad domain and
demands for a high degree of sophistication).

Searle believes that the person in the Chinese room does exactly what a computer would be doing if it
used the same rules to engage in a grammatically correct conversation in Chinese. Both the computer and our
"inside" person are engaging in "mindless" symbol manipulation. This mental experiment leads J. Searle to the
following statements:

Axiom 1: Computer programs are formal (syntactic) and manipulate symbols.

Axiom 2: Human minds have mental contents (semantics) and manipulate meanings.

Axiom 3: Syntax is not translated into semantics, therefore symbol manipulation does not contain any
understanding.

Searle’s argument is intended to show that implementing a computational algorithm that is formally
isomorphic to human thought processes cannot be sufficient to reproduce the real process of thought. The last
decade of research in the area of intelligent systems demonstrated that this reasoning is too simplistic and is
not sufficient to adequately represent even existing constructed systems with autonomy (like unmanned
autonomous vehicles). Searle’s schemes of analyzing processes of "thinking" are overly primitive and cannot
represent existing mechanisms of sensory processing, knowledge representation and behavior generation in
multiresolutional systems of motion control practiced in existing autonomous vehicles. Something more is
required. Researchers that develop intelligent systems challenge Searle’s argument by creating new artifacts.

2. L. Zadeh’s test can be formulated as follows: a paper is presented to the intelligent system, and it is
supposed to transform it into a summary3?. The quality of the summary can be judged by the ability of the
system to generalize and formulate the meaning of the paper in a sufficiently concise form. No doubt, any
system that can do it should be considered intelligent. Clearly, the system should be capable of generalizing.
Says L. Zadeh: " the ability to manipulate fuzzy sets and the consequent summarizing capability constitutes
one of the most important assets of the human mind as well as the fundamental characteristic that distinguishes
human intelligence from the type of machine intelligence that is embodied in present-day digital computers3!."

3. Various tests can be proposed based upon more mundane but more practical evaluations of
sophistication and rationality. For example, we can check a capability of a program to generate several

alternative decisions for a particular situation, and to select one of them properly; or its capabilities to analyze

29 A subtle detail: distinguishing and recognizing most of the hieroglyphs is a serious intellectual
problem by itself!

30 L. A. Zadeh, from his BISC letter of 1999

31 A Zadeh, “Outline of a New Approach to the Analysis of Complex Systems and Decision Processes,”
IEEE Trans. on Systems, Man and Cybernetics, Vol. SMC-3, 1973, pp. 28-44
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the experimental data related to a particular physical system, and to compute a feedforward control, and to
introduce a law of feedback compensation. The key issue in the last case is the ability to use the experimental
data: different experimental data require different approaches to computing feedforward control, and different
laws of feedback compensation. The tradeoff "feedforward vs. feedback" is a real test of intelligence as a tool
for reaching successful balance under conditions of redundancy and uncertainty.
4. A. Newell has listed properties that intelligent system must have32:

e recognize and make sense of a scene

e understand a sentence

e  construct a correct response from the perceived situation

e form a sentence that is both comprehensible and carrying a meaning of the selected

response
e represent a situation internally

e be able to do tasks that require discovering relevant knowledge.

12. Who wins the competition: the Real Intelligence or the Impostor?

Using the Turing Test to evaluate intelligence has become commonplace, although as we have already
mentioned above, it does not evaluate intelligence but rather the ability of a system to prefend being intelligent.
Competitions are one of the straightforward primitive methods of judging the degree of intelligence. The

deficiencies of competition are clear from the following list:

* in a competition, a random set of circumstances can affect the results rather than a set of
capabilities of the competing systems; thus, only the results of multiple competitions can
be valid

e it is difficult, if not impossible, to separate the part of intelligence endowed in the body
design from the part of intelligence incorporated into the system of intelligent control;
thus, for judging the intelligent control system, identical bodies are presumed

e competition in the natural environment cannot guarantee the equality of the problems to
be encountered by competing parties; in constructed (artificial) environments, the
difficulty of the problem drops drastically; it does not require that much "intelligence"

The latter feature is not necessarily always the case. The actual challenge is to provide a rich enough
environment within which the tests can be conducted. An example of this would be a completely instrumented
test course for evaluating autonomous robot mobility and mapping abilities, rather than the simple "box world"
that is frequently used.  In fact, one of the keys to our efforts in performance metrics is to come up with these
sufficiently rich environments (test courses or very detailed, ground-truth simulation environments) which can
be used to evaluate the performance of different systems. It is not an easy task. We should encourage a broad

discussion on defining requirements for such environments.

32 Newell, A. (1982) The knowledge level Artificial Intelligence. 18(1), 87-127; Newell, A. and Simon, H. (1963), GPS: A program

that simulates human thought, In Computers and Thought , ed. Feigenbaum and Feldman. McGraw-Hill, New York.
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Therefore, winning a competition, however exciting it might be, leads to the old pitfall of the Turing
test: winning requires no more than pretending to be intelligent rather than demonstrating real tools of
intelligence. Testing of intelligence is a must, but the way of testing is a matter of discussion. The challenge for
competitions is to overcome these obstacles. For example, developing an artificial environment that is dynamic

and challenging , yet reproducible.

13. Measuring the Intelligence Contemplated for the Future

Measuring Intellifactors. One can start analyzing the problem of measuring intelligence within the
domain of Albus’sdefinition that assigns this faculty for control purposes33. The factors of intelligence are the
factors of processes that contribute to intelligence (intellifactors). Logistically, they are dimensions of VI,
mathematically, we can express this as follows:

X; ={x| x is all possible intellifactors}
and the set of intellifactors {Xjg}, is an element of the power set of X;.

A measure of intelligence (IQ) is the measure that can assign a real number to the collective performance
of each element in the set X;. The measure of intellifactor (IFQ) is a measure that assigns a real value to the
collective performance of each element in X.

Measuring the Power of Generalization. There exists a way to narrow the gap between building an
intelligent machine (with its ontogeny3#) and understanding the intelligence process by itself (with its
epistemology3®). The way is to model the process in a biological system3®. How do brains do that? Brains avoid
catastrophic failure when the complexity of computations grows exponentially by use of the NN-dynamics for
generalization by creating "objects" (classes). It is experimentally confirmed that for the same operation of
generalization, computer elements need more computations than brain needs. One can judge on the comparative
productivity of computers during simple maps generalization3” and instantaneous gestalt insights performed by the
brain during human processing of complex images.

Measuring the System’s Intelligence by the Degree of Uncertainty. The latter observation is linked
with the entropy based considerations. Any measure of uncertainty (entropy in particular) is an acceptable
measure of intelligence. If one can measure our uncertainty in taking decisions among alternatives, one can
reduce this value of uncertainty (e.g., by learning), so our system is intelligent. But how do we measure the

value of each alternative? Again, by its uncertainty. A possible way is to measure the probability of success of

33 This concept of measuring intelligence was contributed by Louwrence Erasmus.

34 or how it is done in a living organism

35 or how it is done in the theory of knowledge

36 This concept was proposed by W. Freeman. He refers to the A. Meystel’s statement "the mechanism of
generalization to emerge: it creates new objects" quoted from his e-mail letters to Advisory Board
Members.

37 . D. McMahill, Interactive Generalization: User’s Guide, CMU, Pittsburgh, PA 1998; G. L. Bundy, C. B.
Jones, E. Furse, “Holistic Generalization of Large Scale Cartographic Data,” in J. Muller, J. Lagrange, R.
Weibel (eds.), GIS and Generalization Methodology and Practice, Taylor and Francis, London, 1995, pp.
106-119
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meeting the specifications for each of the alternatives by successive applications or using a model (we might
call it Reliability, in this sense). The higher the success, the lower the uncertainty/entropy. We may counter-
balance this with the cost (or complexity) of achieving very successful alternatives (typically, the higher the
reliability, the higher the cost)38.

Constructing the Benchmarks. Judgment of the system’s intelligence can be done by using indirect,
albeit easy to measure values. In constructing benchmarks, we use the fact that the fundamental attributes of
intelligence include:

e  Ability to perform tasks in unstructured environments
e Ability to learn from experience
e  Ability to transfer knowledge from one domain to another

e  Ability to solve complex problems, requiring deductive and inductive reasoning

The following simple measures can be used as metrics for such abilities in machines3?:
¢  Size and complexity of programs required
e  Memory requirement

e  Solution time

Clearly, such measures are useful only if (a) they are applied to benchmark problems, (b) all
contestants use the same type and model of computer, and (c) all programs are written by comparably
competent programmers, so that the programs are optimal in some sense.

Given these constraints, we could test intelligent systems A and B on the same benchmarks. The one
that accomplishes the task more quickly, and does so with the least complex programs and least memory will be
declared "more intelligent". While evaluating the level of intelligence based on this definition (to avoid the
confusion of introducing a new one) we have to take into account#?:

e type of uncertain environment
e strategy of achieving the goals
e  capability of the system to automatically create and update its subgoals.

Most of the well-established methods for robust control design provide the capability to deal with
small parametric and structural uncertainties and therefore represent a basic level of intelligence in the control
system according to the definition of Albus. Situational uncertainty, e.g. drastic changes in the environment
that are due to completely different operating conditions, severe and unpredictable disturbances, etc.,
completely alter system dynamics, and therefore require control systems with a much higher level of

intelligence.

38 The latter considerations were suggested by P. A. Lima
39 Contributed by G. Bekey
40 From the abstract submitted by D. Filev
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Measuring Autonomy vs. Intelligence. The following question can be considered a fundamental
one*!: What is more important and meaningful to define and to measure with respect to the context of
Intelligent Autonomous Constructed System— Autonomy or Intelligence of a Constructed System? We are
looking for Autonomy, as the premier requirement of an Intelligent Autonomous System. From the designer or
the user point of view, Intelligence enables Autonomy, but it is not a system design objective or a system
requirement per se.

The definition of Autonomy is probably more precisely measurable and more meaningful and it is
easier to come to a consensus about what Autonomy or an Autonomous System is all about, rather than what is

Intelligence or an Intelligent System.

14. Simulated Functioning and Scaled Hardware Testing of Intelligent Systems

The hope is for a balanced combination of a) thorough simulation and b) scaled hardware testing.
Many researchers focus upon simulating systems with high autonomy“2, like B. Zeigler in USA, K.-H. Brassel
in Germany, L. Peters in Switzerland, J.-H. Kim and T.-G. Kim in Korea, and others. However, the challenge of
evaluating intelligence of these systems remains an active problem to be resolved in the upcoming decade.

The most intricate problems associated with the variability and combinatorics of realistic situations can
be resolved by simulating these situations. Thus even the predicament of absent hardware can be avoided by
simulating the problem-impregnated situations. Contests and competitions can be considered a part of this
paradigm. One cannot come even anywhere near covering in realistic testing the spectrum of philosophical®3
views of intelligence (just start to read the mind/body literature!) On the other hand, one might be inclined to
scale back the possible analogies to human intelligence and human involved testing to less convenient but more

pragmatic scenarios.

The Paradigm of Contest and Competitions

1. Symbelic systems. The a-y classification of measurable characteristics (see Section 7) can be made
very representative but is definitely too constrained by the existing general systems and ways of representing
information. Indeed, each of the 25 items on this list is a strong reduction of actual possibilities. Start with (a)
memory temporal depth: why it should be limited? or why should only one value of depth be considered? The
next item is (b) number of objects that can be stored: why should this number be limited? Then, we come to the
number of levels of granularity, definitely a limitation that should depend on the problem. Then, we face
limitation on the vicinity of associative links — the latter should not be limited as well! All 25 items on this list

limit the opportunity to find better (not to speak about "the best") solutions. In the meantime, the environment

41 From A. Yavnai’s abstract
42 See in Ed. by H. Sarjoughian, F. Cellier, M. Marefat, J. Rozenblit., 2000 Al, Simulation and Planning in
High Autonomy Systems, Proc. of the SCS Conference in Tucson, AZ, March, 2000

43 From the e-mail letters by J. Cherniavsky
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conducive for contests and competitions is by definition oriented toward a permanent atmosphere of
inventiveness and development of new signs and new phenomena to be encoded by these signs.

2. Systems with learning. Learning is never forgotten as a very important subsystem of intelligence.
However, there is not too much discussion related to the nature of learning as a substitute for real contests and
competitions. In the meantime, learning plays the role of rehearsing expected ("would be") situations of contest
and competition. Learning via prior experiences or via planning is a mechanism that prepares a system for
contingencies. Thus, learning serves as a critical characteristic of intelligence that solely determines both the
success and failure. It’s there, but if's primarily implicit and serves as a supportive system that serves rather for
improving functioning. Learning provides for a successful adaptation of the intelligent system to changing
environments, e.g. different algorithms for deriving new rules can be utilized for different cases (i.e. algorithms
of reinforcement, habituation, Hebbian association, abstraction, generalization, etc.). A multiplicity of situations
can be anticipated where, without learning, the central purpose of the system could not be achieved.

3. Application Focused Intelligence. In many cases, the intelligence might be defined relative to a
domain of application. Even in the human cases there are people who are "car intelligent" but "literature
ignorant" - different domains, different abilities. This generates a question: if in the human domain one might
distinguish different types of intelligence (Gardner’s 7, Sternberg’s 3, etc.) — should it be beneficial to try
something similar in the autonomous unmanned, or partially manned systems? Indeed, for a human, the need to
quickly move from one subject-oriented vocabulary to another might create a need to deal with using domain
oriented algorithms of generalization, or pattern recognition. Can it be beneficial in the unmanned cases?

All three of these questions can be resolved within the domain of contests and competitions. We can
create and focus on a specific domain where things like self-sustained, appropriate behavior, ability to quickly
act in an uncertain environment, etc. can be physically quantified by realistic measures of performance (units of
time, money, energy). The various contests (AAAI urban search and rescue, robotic soccer, the data-mining
contests, the information retrieval competitions, the speech understanding rallies, etc.) provide the plausible

level to measure and thus compare systems.

15. The Intelligence of Sensing and Sensory Processing

Available results have already suggested that the brain designs for sensory and cognitive processes
differ from, and are even computationally complementary to, the designs for spatial navigation and action. This
complementarity can be noticed by observing that cognitive knowledge needs to accumulate in a stable way
over a period of years, with new knowledge not accidentally erasing previously learned, but still useful,
knowledge**.

The problem of data fusion (both heterogeneous or homogeneous) generated a demand that the

robustness of the fusion stage be closely linked to the number of significant criteria permitting to associate

information required for interpretation®>. Both the uncertainty and the error of the input data, as well as

44 From the abstract by S. Grossberg
45 Contributed by A. Clerentin and L. Delahoche
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uncertainties and errors of the available internal knowledge, jointly produce the uncertainty and the error of
interpretation. The uncertainty is meant to characterize the "degree of actual existence" of the data; the error
characterizes imprecision on the numerical evaluation of the data. The uncertainty and error estimation in
classical fusion processes are generally based on a probabilistic approach. As the number of factors to be
associated for interpretation grows, the need to work with multi-criteria techniques grows. The latter should
help to evaluate the performance of each stage of global fusion processing: for example, data fusion for
localization (generally allows for heterogeneous fusion) or data fusion for incremental map building (generally
demands for homogeneous fusion: the same kind of primitives must merge on different acquisitions). Here
again the use of tools like Dempster-Shafer theory of evidence might be promising.

In a number of applications, including the area of autonomous robotics, the problem of multi-sensor
fusion and joint interpretation determines the value of intelligence related to sensing and sensory processing. It
is clear that, in many situations, the use of multiple sensors is the only way of dealing with the richness of the
external world. Any given sensor takes information about only one of the many attributes of the environment.
But often the arriving information must be carefully gleaned for more than one attribute simultaneously. Only in
this case can the required depth of interpretation be achieved.

So, the problem is how to integrate the information, especially when the sensors are disparate and
when the viewpoints and even scales of incoming information are different. To overcome these problems,
several fusion methods are used. The majority use a probabilistic approach (Bayes rules). A significant portion
use a possibilistic approach that considers sensor evidence to be the value of belief (these rely on Dempster-
Shafer theory). This theory is appropriately expressive, it explicitly represents ignorance, enabling the robot to
differentiate between ambiguous sensing results and not having sensed at all. Other approaches include fuzzy
logic or neural networks.

Information fusion is a growing research domain and of the numerous developed applications show

that it enhances the level of autonomy and intelligence of engineered systems, especially autonomous robots.

16. Questions To Be Answered
This is the list of questions that the Workshop will try to answer?:
Question 1. What is the vector of intelligence (VI) that should be measured and possibly used as a

metric for systems comparison?

Question 2. Should VI be measured in addition to, or instead of, measuring the vector of performance

(VP) determined by the standard specifications?

Question 3. If two systems have the same VP, what is implied by the difference in their VI values?

Can this difference be represented in monetary (cost) units?

Question 4. [s it possible (and meaningful) to have different VI measures: a) goal-invariant, b)

resource-invariant, ¢) time-invariant?

46 Questions 4, 6, 7, 8 were contributed by S. Lee
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Question 5. What should be recommended as a test of VI and how can VP be normalized so that
comparisons may be performed at the same normalized value of VP?

Question 6. Does a universal measure of system intelligence exist such that the intelligence of a
system can be compared independently of the given goals*’? A goal-independent measure may be more
difficult to define. A goal-dependent measure, however abstract the goal may be, can allow for a clear
comparison among the systems of different architecture but with the same goal. For instance, for the latter
case, an intelligence can be represented as how efficiently, and how optimally a system reaches the given goal
by itself, i.e., the power of automatically solving problems defined as the discrepancy between the goal and the
current state.

Question 7. Should the intelligence measure of a system be solely based on problem-solving
capability at time "t" or should it contain the potential increase of problem-solving capability in the future
based on learing?

Question 8. Should the resources required for building systems and system operation play a role in
defining the measure of intelligence? As mentioned above, the efficiency in problem solving should be
included in the measure: for instance, the time and energy required to reach a solution should be taken into
consideration together with the optimality of the solution. But, it is not clear whether we should or should not
include the cost of building a system.

As a reminder, a set of other questions that are ingrained (directly, or indirectly) in the main
questions is formulated as follows:

Question 9. These are the less profound ("secondary") questions that should be addressed at the
workshop and possibly unequivocally answered:

a) how to form VI for various architectures?

b) should the questions 1 through 5 be related to intelligent systems, or autonomous systems,
or both?

c) what is the protocol for dealing with uncertainty when the uncertainty metric is to be
applied in the procedures of decision making? for example, how does the uncertainty of
planning affect the cost of goal achievement?

d) what are the guidelines in constructing the world model and determining its scope in the
variety of applications? how does the scope of "world model" affect the sophistication of
intelligent behavior?

e) how are the questions 1 through 5 related to (and the answers applied to) the systems that

are working under a hierarchy of goals?

f) should a competition between intelligent systems be considered a valid method of judging

V1 value?

47 This seems to be hard to achieve for biological systems. This will be eventually addressed, but in the
short term run the concrete goal of particular cases seems to be more attainable. A single measure of
intelligence requires constructing a system of meta-knowledge.
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17. Glossary
Autonomy — an ability to generate one’s own purposes without any instruction from outside (L. Fogg!
Alternative definitions:
a) independence.
b) Self-government or the right of self-government; self determination.
¢) Self-government with respect to local or internal affairs (AHD) ;
d) the right of self-government,

e) self-directing freedom (Merriam-Webster)

Autonomous System — a constructed system is autonomous if there is a likelihood that circumstances will

arise in which no-one can predict in advance what it will do. (7. Whalen)

Autonomous Intelligent System - an autonomous constructed system is intelligent if we can be reasonably
confident that whatever unpredictable thing it does do will be something that tends toward success in the goals

for which the system was constructed in the first place. (7. Whalen)

Agent (sometimes Autonomous, Intelligent) — a term that has been introduced to use the word system which
is regarded by many as a less desirable one when the software is involved, especially the one with properties of
intelligence. The term Agent has some anthropomorphic overtones, Agent is presumed to be a system that
probably can sense, reason and is intended to act. In other words, Agent should be understood as a system with

elements of intelligence and autonomy.

Intelligence - an ability of a system to act appropriately in an uncertain environment, where appropriate action
is that which increases the probability of success, and success is the achievement of behavioral subgoals that

support the system’s ultimate goal (J. Albus)

Alternative definitions:

- the ability to solve new problems in new ways (L. Fogel)

the capacity to acquire and apply knowledge (AHD).

- the faculty of thought and reason (AHD).

- the ability to adapt effectively to the environment, either by making a change in
oneself or by changing the environment or finding a new one (Britannica).

- the ability to learn or understand or to deal with new or trying situations
(MWD)

- the skilled use of reason (MWD)

- the ability to apply knowledge to manipulate one’s environment or to

think abstractly as measured by objective criteria (MWD)
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18. Appendix
How is Testing of Intelligence Performed on Humans?

The most widely used intelligence tests include the Stanford-Binet (SB) Intelligence Scale and the
Wechsler Scales (WS). The Stanford-Binet test was first introduced in 1916 by Lewis Terman from Stanford
University. The individually administered test, revised in 1937, 1960, and 1972, evaluates persons two years of
age and older. It consists of an age-graded series of problems whose solution involves arithmetical, memory,
and vocabulary skills. WS-test gives both the overall IQ as well as separate IQs for verbal and performance
subtests. An example of a verbal subtest would be vocabulary breadth, while an example of a performance
subtest would be picture arrangement, so that they tell a comprehensible story.

IQ was originally computed as the ratio of mental age to chronological (physical) age, multiplied by
100. If a child of 10 performs the test at the level of an average 12-year-old, this 10-year-old is considered to
have a mental age of 12. In this case the child was assigned an IQ of (12/10)x100, or 120. The concept of
mental age is not a persuasive one, and the computation of mental ages is not used frequently. The values of IQ
are more persuasive if they are computed on the basis of statistical distributions.

Intelligence tests created a controversy about what kinds of mental abilities constitute intelligence and
whether the IQ adequately represents these abilities. It turned out that intelligence tests give better results for
rich kids and are worse for less privileged racial, ethnic, or social groups. Consequently, psychologists have
attempted to develop culture-free tests that would more accurately reflect an individual’s native ability. Johns
Hopkins Perceptual Test, developed in the early 1960s for measuring the intelligence of preschool children, has
a child try to match random forms (geometric forms, e.g. circles, squares, etc. are avoided because some
children may be more familiar with them). Another solution was to use test materials pertinent to a child’s
living environment.

Psychometric tests are performed by observing and evaluating the performance of the Elementary
Cognitive Tasks (ECTs) with items of ECT based on past acquired knowledge, reasoning, and problem solving
requiring the concerted action of a number of relatively complex cognitive processes. A particular ECT is
intended to measure a few relatively simple cognitive processes, independent of specific knowledge or
information content.

Each ECT is devised to address a different set of cognitive processes, and performance on two or more
different ECTs yields data from which individual differences in distinct processes can be measured, such as
stimulus apprehension, discrimination, choice, visual search, scanning of short term memory (STM), and
retrieval of information from long term memory (LTM). ECTs typically do not depend on previously learned
information content, and in those that do, the content is so familiar that it should be common to all individuals
undergoing the test.

Most ECTs are so simple that every tested individual can perform them easily. The differences in
performance are measured in terms of response time (RT). The most interesting ECTs are those with RTs of
less than one second and with response error rates close to zero. The subject’s median RT (over n number of

trials) and the subject’s intraindividual variability of RTs (measured as the standard deviation of RT over n
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trials) are of particular interest. Another type of ECT, known as Inspection Time (IT), measures sheer speed of
perceptual discrimination (visual or auditory) independently of RT.

Measures of RT and IT derived from the various ECTs are analyzed and their correlation is estimated.
For single ECTs, the correlations depend on the complexity or number of distinct processes involved in the
ECT. Some processes are more strongly correlated than others. Interpretation of these correlations depends on
the goal of testing and properties of intelligence that are tested.

A similar approach to testing particular skills can be exercised in the area of intelligent systems. Our
ability to construct metrics should depend on the particular tools or facets of intelligence we will analyze as
related to the particular performance results.

However, all psychological tests of intelligence have one feature in common: they rely upon successful
performance of particular tasks, but they do not attempt to introduce any relatively comprehensive form of the
model of intelligence. It is understandable for measuring intelligence of such an object as a human being. It
would be unforgivable to impose similar detriment upon a researcher in cases where intelligent systems are
autonomous mobile vehicles, organizational systems, large computer based control systems like unmanned
power plants, structures of company management, stock market. If we succeed with these types of intelligent

systems, we might be encouraged to attribute some model to a human intelligence.
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Using the Metaphor of Intelligence

A. Wild
Motorola, Phoenix, AZ 85018

ABSTRACT

Constructed system with autonomy can be considered as possessing
intelligence, if intelligence is understood as a metaphor. It is useful to
be aware of that, when defining desirable features for constructed
systems, in areas such as reflecting the world (ontology), definition
and pursuit of goals (teleology), or general human-like behavior
(anthropomorphism). Modeling and simulating integrated systems
exemplify the usage of multi-scale, multi-disciplinary representations,
as a basis for increasing the autonomy of some specific constructed
systems. Measuring the intelligence of constructed systems requires a
Vector of Metrics for Intelligence. Its components will be defined by
different means, such as conducting existence tests for essential
capabilities, measuring the power to eliminate unnecessary
exploration, competitions of hardware-compatible systems, or vote
by a jury.

KEYWORDS: constructed systems with autonomy, intelligence

1. INTRODUCTION

The intelligence of the constructed systems with autonomy
has to be understood as a useful metaphor, not to be stretched
too far [1]. As beneficiaries of such systems, we are actually
interested in their performance. The underlying assumption,
however, is that building intelligence into the system, whatever
its definition would be, would result in a generic and
systematic way to improve their performance.

While it is relatively easy to imagine ways to measure
performance, it is far less obvious how to measure intelligence,
as we lack a crisp, generally accepted definition, be that for
human beings, for other beings, or for artifacts.

The casual observer perceive manifestations of
intelligence in multiple forms, and also will notice that
somebody performing very intelligently in one situation may
show what appears to be a lack of intelligence in another
situation. This may suggest that intelligence is a local skill. On
the other hand, some researchers intuitively feel that
intelligence is an intrinsic capability of an entity, and engage in
exploring the commonalties between different entities
considered intelligent.

Pragmatically, the latter seems the most promising
approach. If successful, it would provide the foundation for a
methodology to construct systems with continuously

improved capabilities. To drive the progress, it is essential to
establish metrics, ranking systems according to their
intelligence. Note that for this purpose it is actually irrelevant
whether one considers intelligence as a generic or a local
property. Depending on the viewpoint, the ranking would be
valid either within a specified sub-space or in general.
However, general methods, if possible, would have clearly a
wider impact.

2. LIMITS OF THE METAPHOR

A multitude of aspects can be considered as elements or
capabilities necessary to support intelligent behavior. In some
versions, the Vector of Intelligence has 25 dimensions. It is
supported by a set of computational tools, with a system
architecture counting 16 features, and is completed by a
control and data acquisition system with supervisory
authority, also featuring a number of capabilities. Many of
these elements do justice to the view adopted by the Italian
Renaissance and illustrated famously by Leonardo da Vinci:
the man is the measure of all things. While this approach is
quite effective, and may be often unavoidable, caution is in
order to avoid excesses in at least three respects: our view of
the world, our goal setting capabilities and our own being.

2.1 Ontology

The dimensions of the vector of intelligence and the
supporting tools, architectural features and auxiliary
subsystem should not be excessively isomorphic with our
contemporary perception of the world.

A few centuries ago, we might have asked an intelligent
system to recognize the four elements and their interactions,
we would have argued about the phlogiston, and hoped that
eventually an intelligent system will extract the quintessence of
anything and everything. It should have recognized the
planets and the major stars, and have had the ability to
synchronize actions with favorable skies. The Euclidean
geometry was a very pertinent model to simplify the
description of the world, by accepting that concepts like a
straight line do have a kind of existence. Likewise, all needed
knowledge about gravity was that there exists an attraction
force between two bodies, precisely equal to the Cavendish
constant multiplied by the two masses divided by the square
of the distance. This formula easily generated the laws derived



by Kepler from mountains of data and hundreds of years of
observations. The depth of our understanding was made
sensible (was measured ?) by this tremendous simplification.

Unfortunately, the space-time curvature of generalized
relativity eliminated the paradigm of the straight line, and
Newton’s simple formula was unable to lead to a solution for
three body interactions. Our present view is that the world
does not admit a simple description.

When facing complexity, we tend to rely upon hierarchy
to simplify interactions. Ideas about multi-resolution, multi-
scale views imply a hierarchy. We tend to require that an
intelligent system can do the same, being able to handle
several hierarchy levels. Their number and their adequate
utilization are candidates for intelligence metrics.
Computational tools of intelligence define rules and
procedures for crossing boundaries between hierarchy levels.

However common and widely accepted, the hierarchical
representation of complexity is probably no more than the
current model, and it seems reasonable to expect that it will be
eventually replaced by a different view. This would also induce
an evolution of the intelligence metrics derived from a model of
the world, as it evolves historically.

As a matter of fact, the next paradigm may already take
shape under our eyes: can one speak about the Internet as
about a constructed system with autonomy, exhibiting
intelligence ? And if yes, how would that intelligence be
measured ?

2.2 Teleology

We consider the ability to generate goals as a leadership
feature. Some philosophers consider this as the defining
feature of any living beings.

However, humans, and other living creatures, pursue
both explicit and implicit goals. They either conceptualized
themselves the explicit goals, or receive the goals form higher
authorities. In anyone of these situations, they may or may not
exhibit intelligent behavior. A simple positive example is young
James Watt, being given the goal to keep the pressure of a
steam vessel constant. He did not conceive the goal himself,
actually, he was pursuing rather different interests. It was not a
goal with any recognizable intellectual challenges. But Watt
generated a response that resonates until today, and will keep
resonating, being, among other things, largely responsible for
this workshop.

2.3 Anthropomorphism

A system scoring high on all dimensions of the Vector of
Intelligence and its auxiliaries will probably pass easily the
Turing test. It may do even more, it would be basically human,
at least to the extent of our current understanding of the way
humans are looking like. Some of the properties listed by

Neville address the ability to communicate like humans,
including such things as understanding a sentence and
developing knowledge. These ideas seem to relay on the
perception that the more a system is similar to a human being,
the more would it be perceived as intelligent.

Even if our current understanding of humans would be
definitive, this is approach may be an anthropomorphic trap.
Actually, there is no necessity for the constructed structures
with autonomy to present any isomorphism with our ideas
about the human beings. Many of the most effective artifacts
created by humankind are radically non-anthropomorphic, or
non-biomorphic, for that matter. Starting with the wheel,
radically different from a leg, yet allowing better locomotion,
one can easily follow with any number of examples. A jet
airplane is not a bird. A computer is not a brain. And a
constructed automaton with autonomy is not a living being.
There is no recognizable necessity for these artifacts to be
indistinguishable from, or even similar to their closest living
relatives.

If one recalls the number of words in any language
describing non-intelligent behavior, one may conclude that
copying too closely humans may be less than desirable.

3. PROGRESSING TOWARDS THE
METAPHOR

Building systems reflecting our view of the world, our
purposes and our way of being, may prove productive. Multi-
scale representations are probably a useful way to handle the
complexity of the world in our minds, at this point in the
evolution of our understanding. We can legitimately expect
such representations to be useful in sciences and engineering.

The ultimate multi-discipline, multi-scale simulations are
attempted by cosmologists, who hope to deduce the
characteristics of the universe, 10 to 15 billion years after the
Big Bang, from its characteristics when it was younger than
one second.

Electronic engineers aiming to design integrated
microsystems, have simpler needs: to simulate, with some
quantitative accuracy, what happens on a silicon wafer within
a time span from a few nanoseconds to a few hours.
Microsystems are defined here as monolithic structures
functionally equivalent to multi-chip systems. Increasing
integration levels drive the semiconductor industry towards
building system on a chip. To address this demand, design and
manufacturing must integrate heterogeneous elements with
traditional data processing circuits, encompassing multiple
disciplines, multiple scales in space and multiple scales in time,
within a coherent framework of computer aided design.
Adequate modeling and simulation enables closed loop
optimization and microsystem design automation.

Microsystem design must handle multi-scale modeling in
time, to cope with the wide gap present in the temporal scales.
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While atomistic calculations are useful for continuum
simulations, molecular dynamic simulations are limited to times
on the order of nanoseconds. The gap can be bridged by a
meso-scale calculation, for instance using the Lattice Monte-
Carlo (LMC) method to describe the hops between stable
states (nanoseconds) rather than the vibration frequencies of
the lattice (fractions of picoseconds). In space, multi-
discipline, multi scale modeling is often required to link
macroscopic reactors to microsopic integrated elements. As an
example, a micromachined gear, 1 micrometer in diameter, can
be analyzed using three hierarchical levels: continuum models
(finite element) for the body of the wheel, molecular dynamics
for gear teeth, and tight-binding for the contact between teeth.
The connection is realized via a self-consistent overlap region,
while keeping the time discretization in both connected
domains in lock step, the whole system requiring massive
parallelization at Maui Supercomputer Center.

Molecular
Dynamics

<

Reactor

Currently, the multiple disciplines involved in
microsystems are either unconnected, building an archipelago,
or put together by human programmers in an ad-hoc manner.
Active research, however, is aimed at systems able to build
bridges between the isolated domains, as a pre-requisite for
using optimizers in closed loop. This technique allows the
correlation between decisions at one manufacturing step and
the system level features and performance.

Using an optimizer at the meta-level to manage the design
process brings the system one step further. Many features
would be required to incorporate these or similar functions in a
constructed system with autonomy, exhibiting some
intelligence.

This “bottom up” progression towards a development
system with autonomy increasingly adds features included
among the dimensions of the Vector of Intelligence. This
seems a promising way towards the next challenges in
engineering, believed to be nanosciences, biological systems,
and last but not least, robotics. Searching for their intelligent
features would surely provide underlying commonalties and
accelerate the progress.
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4. MEASURING THE METAPHOR

As the Vector of Intelligence and its supporting structures are
multi-dimensional, multi-faceted and quite heterogeneous, a set
of metrics would probably be necessary, in the hope that if a
unitary definition of intelligence would emerge, a composed
metric may by put forward. The four approaches presented
below are the beginning of the Vector of Metrics for
Intelligence.

4.1 Counting features

Some features of the Vector of Intelligence and the supporting
structures can be tested by a go/no go test, they either exist
within a given system, or they do not. Furthermore, some of
them have clear numerical definitions and can be determined
by counting. The result of counting is final, as long as the
structure does not evolve, or represent just an assessment at
that point in time, if the system can evolve. The only open
problem is how to of aggregate the different dimensions of the
Vector of Intelligence, so that ranking can be done.

4.2 How far away from enumeration ?

Testing for functional correctness of a system poses serious
challenges even at the lowest levels. For example, testing the
hardware of a microprocessor, a finite state machine, is
conceptually easy, yet unsolvable practically. Theoretically, a
test can run through all possible transitions between states,
with all bit configurations at the external inputs, comparing at
each step the outputs with the specification. The number of
states and transitions is finite, yet so large, that the test of a 32
bit processor running at 1GHz would take a time longer that the
age of the Universe.

To reduce the number of tests, one can use additional
switching elements to reconfigure the structure to a finite state
machine of lower complexity. If the logic gates and storage
elements in the finite state machine have been defined
algorithmically, one can safely accept that the functionality
would be correct, if no physical defects are present. In this
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case, the simplified structure may be used to proof that all the
desired logic gates and storage elements (a few 10 or 100
million of them on contemporary chips) are present, functional,
and properly connected. These methods, currently used, are
still unable to provide satisfactory test coverage. At a more
abstract level, formal analysis of the structures is researched as
the next opportunity to achieve it. If one adds to the testing
the requirement to proof that a system or a piece of software is
providing optimum responses in all cases, the complexity of
the task is inhibiting.

In general, a measure of intelligence could be how much
of the space to be investigated is not explored through
enumeration.

This is almost isomorphic with some areas of scientific
knowledge. For instance, the postulates of thermodynamics, to
be accepted rather than demonstrated, point out what is
impossible to achieve, saving us huge efforts, like trying to
build all possible cases of perpetuum mobile of the first and
second species, in addition to trying to reach absolute zero.
Obviously, the postulates are very effective in eliminating an
infinity of pointless attempts.

4.3 Contests

Intelligent systems are expected to perform well in uncertain
situations, and direct competition among systems might be an
appropriate way to generate uncertainty, providing means to
rank them.

Examples of competitions are robot wars, fire-fighting
robot contests, or robot-soccer tournaments. It is necessary to
define the contests such that they address either the body or
the mind of the systems in competition. Robot wars address
obviously both. Athletic capabilities, rather than intelligence,
also determined the outcome of the last World Cup for Robot
Soccer, at which one team had access to more powerful motors
than the other teams.

To dissociate the two components, an easy way would
be to organize games between robots mechanically identical,
but driven by different minds, a luxury seldom available with
human beings.

4.4 Vote

Capturing all elements necessary for intelligent behavior is a
complex and controversial endeavor. The Vector of Intelligence
and supporting features, even after unnecessary
anthropomorphic features have been eliminated, still has
dimensions judged by perception.

Contemplating the behavior of living beings, one would
readily identify some that would be spontaneously perceived
as non-intelligent (stupid), while a whole range would be rather
neutral, neither intelligent nor stupid. An alternative approach
to building intelligent systems, could be to address the topic of

building non-stupid systems, specifying what they should
NOT do.

For instance, they should not persist in error. A non-
stupid system would recognize a hopeless situation, and
change its behavior or method. This distinguishes intelligence
from blind instinct: ants keep building their houses even after
the eggs have been removed. Although methods have been
defined and implemented for quite some time to avoid stalling,
quite sophisticated autonomous systems on a remote Planet
still got stuck, as do soccer playing robots. When a player
manages to gets unstuck by spinning, the human observers
cheer. However, the opposite result is achieved, when players
start spinning without a recognizable reason.

Given the subjective component in characterizing
behavior as being intelligent, one could also envision scoring
by the vote of a human jury. This would be similar to the
methods used in some sports such as skating, in which a jury
gives two notes: one for the technical merit, one for the artistic
impression. After all, contests and games are entertainment,
and audiences are entitled to have some fun.
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ABSTRACT

A critical need for a high performance autonomous system is the
ability to generate appropriate responses when faced with
conditions that were not explicitly considered during off-line
design. This paper emphasizes three technical concepts as
essential for meeting this need: multimodels, anytime algorithms,
and dynamic resource allocation. An example from ongoing
research in the autonomous uninhabited aerial vehicle domain is
used to illustrate the concepts. Some competing concepts are
discussed, and connections with consciousness and metrics are
outlined.

Keywords: Autonomous systems, multimodels, anytime
algorithms, resource allocation, uninhabited air vehicles,
consciousness

1. INTRODUCTION

Society, industry, and government are all exhibiting
increasing interest in autonomous and semi-autonomous
systems—complex engineered artifacts that require minimal
or no human involvement for their operation. The
motivations for this interest range from cost-efficiency to
environmental safety to national defense. Potential
applications are everywhere, especially where human
operation is infeasible or dangerous: warfare, deep space
missions, terrorism countermeasures, and toxic material
handling are examples that come readily to mind.

From one perspective, it could be argued that the history of
automation is the history of progress in engineering
autonomy. We have been successful in automating ever-
higher levels of operation, from regulatory control to
supervisory control on upward. The Wright Flyer required
the human pilot to perform the inner-loop control function.
Today’s commercial aircraft can fly from point A to point
B, automatically closing the loop on not just the inner loop
but also outer loop, handling qualities, and waypoint
following functions.

But autonomy is much more than automation. Today’s
engineered systems may be highly automated, but they are
brittle and capable of “hands-off” operation only under
more-or-less nominal conditions. As long as the system
only encounters situations that were explicitly considered
during the design of its operational logic, the human
element is dispensable. As soon as any abnormal situation
arises, control reverts to the human.

An autonomous agent must be capable of responding
appropriately to unforeseen situations—that is, situations
unforeseen by its designers. Some degree of
circumscription of a system’s operating space will always
exist, since survival under every environmental extreme is
inconceivable, but “precompiled” behaviors and strategies
are not sufficient for effective autonomy.

Below, I first discuss some features and characteristics that [
believe are necessary for engineering high-performing
autonomous systems. Next, in Section 3, an example from
work in progress—which is focusing on the development of
autonomous capabilities for uninhabited aerial vehicles—is
presented. Section 4 discusses some alternative
perspectives on engineering autonomy, followed by a
selective review of the consciousness controversy. |
conclude with a measurement-related note.

Parts of this paper are adapted from (Samad and Weyrauch,
2000) wherein some further elaboration can be found.

2. ASPECTS OF AUTONOMY

What does it mean to be able to react appropriately to
unforeseen situations? To be capable of exhibiting
behaviors that are not precompiled? I would like to
emphasize three technical concepts: multimodels, anytime
algorithms, and dynamic resource allocation. These are
discussed below, and a brief digression on the topic of
hierarchy is also included.

2.1  Multimodels: Explicit representations of

heterogeneous knowledge
In the absence of a sufficiently rich built-in library of
canned responses to specific situations, an agent must be
able to rely on an explicit, algorithmically manipulable
knowledge base. Instead of reflexive responses being built
in, the knowledge base required to generate responses
deliberatively must be incorporated.

The knowledge base must capture relevant details about the
capabilities of the autonomous agent, its environment, other
agents it expects to be interacting with, its tasks or
objectives, etc. These “models” need not be perfect; they
represent what the agent believes, not objective truths. But,
almost regardless of their fidelity, they allow the agent to
reason and to determine responses to a potentially hostile
world. The effectiveness of the responses will be a function
of the fidelity of the models (in part), but, I would maintain,
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autonomy and effectiveness are separable. Stupid
intelligence is an oxymoron; stupid autonomy is not. (In
most of this paper, however, [ do not make a careful
distinction between intelligence and autonomy.)

[ use the term multimodels to refer to multiple,
heterogeneous knowledge representations. We later discuss
a domain-specific example, but here I would like to note
one property of multimodels that is likely to be useful
across domains. The degree of precision and accuracy of
knowledge that an autonomous agent must consider will
vary with the situation it finds itself in. In some cases,
disparate models may be used to capture different levels of
detail. However, a greatly preferable option is a unified
modeling framework that is capable of providing estimates
or predictions at multiple levels of resolution, the level in
effect at any time being specifiable by a higher level
function.

2.2 Dynamic resource allocation and anytime

algorithms
An autonomous agent must be able to dynamically manage
its processing and other (sensing, actuation, communication,
power) resources. In the face of multiple competing
demands and objectives, each of which requires individual
algorithmic attention, an agent cannot generally afford to
examine any exhaustively. The world does not wait for
closure of contemplation.

Thus, tradeoffs must be made in real-time, to decide how
inevitably inadequate resources must be apportioned to the
multiple demands on them. This is an issue that generally
gets little attention from the intelligent systems community,
yet it is no less critical than the issue of designing
algorithms for information processing for autonomous
systems.

Different processing tasks have different criticalities,
deadlines, and other properties. Some tasks may need to be
executed on a fixed periodic basis, others may be event-
driven, others yet may be continually ongoing. This variety
is suggestive of the complexity of real-time resource
management for autonomous systems.

Of particular interest for autonomous operation are
“anytime” algorithms—algorithms that are able to flexibly
exploit available computational resources. Beyond a certain
minimum execution time that it may require to generate an
initial candidate solution, an anytime algorithm can
iteratively improve on this solution over time. Randomized
algorithms such as evolutionary computing are prototypical
examples.

Resource management in current control systems presents
an illuminating contrast with the needs for autonomous
operation noted above. All control systems today have to
address resource constraints. This is done by determining
ahead of time—during the design process—precisely which

tasks will need to be executed under what conditions. Task
execution schedules can then be precomputed and defined.
This static scheduling approach is infeasible for autonomous
systems.

2.3 Hierarchies, but not strict ones

The sophisticated information processing systems we
currently engineer are almost always hierarchical. Further,
the design methodology that is proposed in today’s techno-
culture emphasizes strict, hierarchically structured
processes. Hierarchy as an engineering design heuristic has
much to recommend it, but [ would assert that it is a mistake
to assume that all intelligent systems must be analyzable as
strictly hierarchical. One need only look at the central
nervous system of any organism one thinks of as intelligent
(e.g., the human brain) as evidence. There is certainly
structure to the brain, but a formal, strict hierarchy is a
counterfactual insistence. Bypass connections, reflex
reactions, affective conditioning, many intriguing
pathologies—these are all indicative of an organization that
is better thought of as a web than a tree, or at least as only
loosely hierarchical.

As an example, see Figure 1. Elements of the figure
resemble the typical multilayer hierarchical architectures
that attempts at engineering autonomous systems often
adopt (i.e., the organization as shown of the spinal column,
the brainstem, the thalamus, and the cerebrum). However,
additional pathways are also present, forming prominent
and crucial bypass structures and feedback loops.
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enabling and modifying

dynamic response (coordination Brainstem

yr) ; P N B Inner feedback loop for
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errors (coordination of response)
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Figure 1. Simplified architecture for primate central
nervous system (figure courtesy of Blaise Morton).

3. EXAMPLE: ROUTE OPTIMIZATION FOR AN
UNINHABITED AUTONOMOUS VEHICLE

We briefly discuss here some ongoing research at

Honeywell Technology Center, targeted toward the

development of algorithms and software mechanisms for

uninhabited air vehicles (UAVs), with specific emphasis on

demanding military applications. Multimodels, anytime



algorithms, and dynamic resource allocation feature
prominently in our research.

An example of a multimodel knowledge base for route and
trajectory optimization in a UAV is shown in Figure 2. The
figure shows a (wavelet-based) multiresolution
time/frequency model of a trajectory. By selectively setting
specific parameters—each associated with one of the boxes
in the top graphic—to zero, the space of trajectories can
automatically be constrained so that different segments of
the trajectory are defined in more or less detail as
appropriate for a given situation. Trajectory optimization is
then conducted over the enabled parameters, ensuring that
computational resources are used efficiently. Under normal
conditions, we can expect that the resolution profile would
gradually decrease over the optimization horizon. The
figure also shows multiresolution models of aircraft
dynamics and terrain; these and other models are necessary
to check various constraints on a hypothesized trajectory
and to calculate the cost function for optimization. (See
Godbole, Samad, and Gopal [2000] for more details.)
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Figure 2. Multimodels for trajectory optimization for an
autonomous aircraft.

This multimodel approach has been integrated with an
anytime algorithm for route optimization, and a simulation
result is shown in Figure 3. A UAV is skirting a threat area
when a target model (including the target’s coordinates) is
communicated to it. The original route (not shown in the
figure) was not overflying the target area but instead
adopting a low elevation radar-evading route over a ravine.
Once the target is detected, the online trajectory
optimization algorithm is executed. In this case, greater
resolution is desired over a medium horizon interval, and
minimizing the previous cost function for low flight is
considered less important than rapidly generating an
alternative route that overflies the target area. Asthe UAV
continues its flight, incremental re-optimizations are
performed at regular intervals, with the computational
resources expended on these optimizations varying

continuously depending on the particular objectives and
models under consideration at that time.

We currently use an evolutionary computing algorithm—an
extension of the algorithm outlined in (Samad and Su,
1996)—for optimizing the trajectory. The EC algorithm
searches over the space of nonzero coefficients in the
multiresolution wavelet-based representation noted earlier.

As I hope this example illustrates, the concepts of
multimodels, anytime algorithms, and dynamic resource
management are related in that effective autonomy requires
the integration of all of them. Given a particular situation
that requires an autonomous agent to react, it must be able:

e to access the knowledge it has that is relevant to the
situation in the context of its goals and abilities;

e to flexibly reason about its decision and control
options, adapting the level of scale and resolution in its
processing to the situation and objectives;

e to tradeoff competing demands and requirements in the
face of resource limitations.
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rapid optimization
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Figure 3. A frame from a simulation example of active
multimodel control for trajectory optimization.

4. ALTERNATIVE PERSPECTIVES

There are, however, other reasonable solutions and
perspectives to engineering autonomy that are being
proposed, and a few are briefly noted in this section.

4.1 Model-free autonomy

It seems reasonable to correlate the autonomy of a system
with the fidelity or scope of the models accessible to it, a
connection I have made above. The richer the explicit
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representations of its environment, itself, its collaborators,
etc., that a system contains (regardless of whether these
representations are acquired through learning or are
hardwired by a designer) the more likely that an engineering
system can operate effectively without continuous human
supervision. So a model that can be symbolically
manipulated may be seen as a necessary condition for
autonomy.

But consider (as much research in intelligent systems is
starting to do) an ant. There are certainly properties of ant
behavior that we would be delighted to be able to
incorporate within constructed systems with autonomy. An
artificial ant, if we were able to construct one, would be
considered to be a system with some non-trivial degree of
autonomy.

Or, if the capabilities of an ant do not warrant the
“autonomy” label, what about an ant colony? A million
ants no more make an explicit, manipulable model of the
world than an ant by itself.

The most prominent exemplar of this line of research in
autonomous systems is the “subsumption architecture” of
Brooks (1991), a central tenet of which is that the world can
be its own model. No representations are needed—in fact,
they are seen as harmful since in dynamic and ever-
changing environments they can rapidly become outdated.

4.2 Is biology the only model?

Today, all the truly autonomous systems that exist are
biological ones. It therefore seems appropriate to mimic
salient features of biological systems in the design of
engineered autonomy. However, an alternative viewpoint
may lead us to question such biomimicry. Most human
engineering, an endeavor that has enjoyed considerable
successes, has not drawn design inspiration from biological
principles—airplanes are an obvious example.
Architectural sketches of brain organization (as in Figure 1)
may be dismissed as irrelevant by this argument.

Of course, until some non-biologically-inspired autonomous
artifact is produced, the study of existing autonomous
systems (i.e., biological ones) should be helpful. But it can
legitimately be argued that biology need only be a weak
model.

4.3 Autonomy need not be physically grounded
Our discussion above has exemplified autonomous systems
with UAVs, and most research in autonomy focuses on
vehicular systems (terrestrial, undersea, or in air or space).
While autonomous vehicles are a particularly exciting
prospect for future engineering systems, autonomy, as a
property, should not be considered constrained to physically
mobile platforms.

In fact, it is important to consider autonomous systems that
are not vehicles, since a broader understanding of autonomy
is contingent on an understanding of the full spectrum of the

topic. Different application areas will have specific
characteristics. For example, in the process industries there
is a continuing drive to increase the level of automation in
plants, sometimes even quantified by a “number of loops
per operator” metric. An autonomous decision and control
system for an oil refinery will have to deal with issues
related to high dimensionality (a refinery can have 20,000
sensors and actuators), significant delays due to material
transport (dead times can be on the order of hours), and the
lack of full state feedback.

At an even greater remove from physicality, we can
contemplate autonomous computer and communication
networks, which need operate only in the “virtual” realm.

5. CONSCIOUSNESS—REQUIREMENT OR RED
HERRING?
The notion of developing engineered sensors or actuators, or
even low-level models of computation, that are based on
biologically gleaned principles is uncontroversial.
Embodying higher-level cognitive capabilities in
computational systems, however, is another matter. Some
would argue that the sorts of phenomena found in the brains
of humans cannot even in principle be realized by the sorts
of machines we are contemplating. The levels of autonomy,
intelligence, and adaptability exhibited by humans are
thereby excluded (the argument goes) from realization in
engineered systems.

The concept of consciousness lies at the center of this
controversy. I take it as given that human-like performance
by a machine requires the machine to have something akin
to consciousness—an ability to reason about and reflect on
its own behavior, not just “blindly” follow preprogrammed
instructions.

There are two theoretical limitations of formal systems that
are driving much of the controversy—the issue under debate
is whether humans, and perhaps other animals, are not
subject to these limitations. First, we know that all digital
computing machines are “Turing-equivalent”—they differ
in processing speeds, implementation technology,
input/output media, etc., but they are all (given unlimited
memory and computing time) capable of exactly the same
calculations. More importantly, there are some problems
that no digital computer can solve. The best known
example is the halting problem—we know that it is
impossible to realize a computer program that will take as
input another, arbitrary, computer program and determine
whether or not the program is guaranteed to always
terminate.

Second, by Godel’s proof, we know that in any
mathematical system of at least a minimal power there are
truths that cannot be proven and falsehoods that cannot be
disproved. The fact that we humans can demonstrate the
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incompleteness of a mathematical system has led to claims
that Godel’s proof does not apply to humans.

In analyzing the ongoing debate on this topic, it is clear that
a number of different critiques are being made of what we
can call the “computational consciousness” research
program. In order of increasing “difficulty,” these include
the following:

=  Biological information processing is entirely analog,
and analog processing is qualitatively different from
digital. Thus sufficiently powerful analog computers
might be able to realize autonomous systems, but
digitally based computation cannot. Most researchers
do not believe that analog processing overcomes the
limitations of digital systems; the matter has not been
proven, but the Church-Turing hypothesis (roughly,
that anything computable is Turing-Machine [i.e.,
digitally/algorithmically] computable) is generally
taken as fact. A variation of this argument, directed
principally at elements of the artificial intelligence and
cognitive science communities, asserts that primarily
symbolic, rule-based processing cannot explain human
intelligent behavior.

=  Analog computers can of course be made from non-
biological material, so the above argument does not
rule out the possibility of engineered consciousness.
Assertions that the biological substrate itself is special
have also been proposed. Being constructed out of this
material, neural cells can undertake some form of
processing that, for example, silicon-based systems
cannot. Beyond an ability to implement a level of self-
reflection that, per Godel, is ruled out for Turing
machines, specifics of this “form of processing” are
seldom proposed, although Penrose’s hypothesis that
the brain exploits quantum gravitational effects is a
notable exception (Penrose, 1989). (It is worth noting
that no accepted model of biological processing relies
on quantum-level phenomena.)

= It has also been argued that intelligence, as exhibited by
animals, is essentially tied to embodiment.
Disembodied computer programs running on immobile
platforms and relying on keyboards, screens, and files
for their inputs and outputs, are inherently incapable of
robustly managing the real world. According to this
view, a necessary (not necessarily sufficient)
requirement for an autonomous system is that it
undertakes a formative process where it is allowed to
interact with the real world.

=  Finally, the ultimate argument is a variation of the
vitalist one, that consciousness is something extra-
material. For current purposes this can be considered a
refrain of the Descartesian mind/body dualist position.
Modern variations on this theme include Chalmers
(1995)—an article that also includes a rebuttal by
Christof Koch and Francis Crick.

The issue of consciousness in machines has captured the
imagination of many as a result of the famous (or notorious)
Chinese room thought experiment suggested by John Searle
(1980). Searle imagines himself locked inside a room,
unable to communicate with anyone outside except through
slips of paper passed through a slot in the door. These slips
of paper are written in Chinese, a language Searle has no
knowledge or understanding of. However, Searle has been
given a voluminous “script” that details (in English) the
algorithmic manipulations that he should carry out upon
receipt of messages. Some of the messages can have
questions written on them, others may describe a story.
Searle allows that the script is perfect in that the
manipulations result in responses that Searle can transcribe
(the symbols that he reads, manipulates, and writes are
meaningless squiggles to him) and pass back to his
interrogator. These responses are in fact appropriate in
context; to the person outside, Searle must understand
Chinese. The point of the Chinese room (thought)
experiment is that knowing how the responses were
generated we would not say that Searle “understands”
Chinese. This is a critique of one school of thought that
maintains that rule-based algorithmic processing is
sufficient for understanding. Variations of the experiment
and the argument have since been directed at other types of
automated mechanisms.

Consciousness is a multifaceted phenomenon. I would
maintain that reflective, deliberative decision making is an
important element, although admittedly not the only one.
Thus the technical concepts discussed earlier—multimodels,
anytime algorithms, dynamic resource allocation—which, I
argued, are essential for high-performance autonomous
behavior, are by the same token necessary correlates of
consciousness. (Our observations of) our own conscious
processing support(s) this contention—we dynamically
allocate cognitive resources as appropriate for an unforeseen
situation, scale the precision and resolution of our
processing accordingly, and rely on our knowledge of the
various systems and phenomena that constitute our
environment.

6. TOWARD METRICS

Even for humans, testing and quantifying intelligence is a
controversial activity. The difficulty of compressing the
multifaceted nature of intelligence into one scalar quotient
has led to proposals to consider “intelligence” not as one
unitary quantity but as a collection of properties that are
mutually incommensurable (e.g., Gardner, 1983).

But humans, as a species, have much in common. We all
have the same sensory apparatus; the same physiology,
more or less; the same innate drives; the same
communication apparatus; etc. If quantifying intelligence is
so problematic for humans, one can wonder whether it is
even sensible for artificial systems, which may have little or
nothing in common. Comparing and contrasting the

47



intelligence of an intelligent search engine for the Web with
the intelligence of an autonomous vehicle is a challenge that
is not only huge but perhaps unaddressable. We will need
to decompose the notion of intelligence in this case too,
except that instead of a handful of separate factors we might
end up with a much larger number.

The technical concepts I have focused on in this paper can
all be considered dimensions along which autonomy and/or
intelligence can be measured. The extent to which an agent
has available explicit models of relevant phenomena and
systems, the scaling capabilities of the anytime algorithms
available to it, and the sophistication of its adaptive
computational resource allocation mechanisms, all bear on
how well the agent will perform in a complex, dynamic
world. More research is needed before these connections
can be formalized or quantified—I have been concerned
here with just their identification.

Acknowledgement

The research discussed in this paper is supported in part by
the U.S. Defense Advanced Research Projects Agency
(DARPA) under contract number F33615-98-C-1340.

References

Brooks, R. (1991). Intelligence without representation, Artificial
Intelligence, vol. 47, pp. 139-159.

Chalmers, D. (1995). The puzzle of conscious experience,
Scientific American, pp. 80-86, December.

Gardner, H. (1983). Frames of Mind. New York: Basic Books.

Godbole, D., T. Samad, and V. Gopal (2000). Active multi-model
control for dynamic maneuver optimization of unmanned air
vehicles. Proc Int Conf. on Robotics and Automation, San
Francisco, CA.

Penrose, R. (1989). The Emperor's New Mind. Concerning
Computers, Minds, and the Laws of Physics, Oxford Univ. Press.

Samad, T. and T. Su (1996). On the optimization aspects of
parametrized neurocontrol design. /EEE Transactions on
Components, Packaging, and Manufacturing Technology vol. 19,
no. 1, pp. 27-36.

Samad, T. and J. Weyrauch, eds. (2000). Automation, Control and
Complexity An Integrated View. Chichester, U.K.: John Wiley
& Sons.

Searle, J. (1980). Minds, brains, and programs. Behavioral and
Brain Sciences, vol. 3, pp. 417-458.



Theoretical Constructs and Measurement of Performance and Intelligence in
Intelligent Systems

Larry H. Reeker
National Institute of Standards and Technology
Gaithersburg, MD 20899
(Larry.Reeker@NIST.gov)

Abstract

This paper makes a distinction between
measurement at surface and deeper levels. At
the deep levels, the items measured are
theoretical constructs or their attributes in
scientific theories. The contention of the paper is
that measurement at deeper levels gives
predictions of behavior at the surface level of
artifacts, rather than just comparison between the
performance of artifacts, and that this predictive
power is needed to develop artificial intelligence.
Many theoretical constructs will overlap those in
cognitive science and others will overlap ones
used in different areas of computer science.
Examples of other “sciences of the artificial” are
given, along with several examples of where
measurable constructs for intelligent systems are
needed and proposals for some constructs.

Introduction

There are a number of apparent ways and
certainly many more not so apparent ways to
measure aspects of performance of an intelligent
system. There are a variety of things to measure
and metrics for doing so being proposed at this
workshop, and it is important to discuss them.
To develop a measure of machine intelligence
that is supposed to correlate with the system’s
future performance capability on a larger class of
tasks considered intelligent would be analogous
to human IQ. That would require agreement on
one or more definitions of machine intelligence
and finding a set of performance tasks that can
predict the abilities required by the definition(s),
and still might not say much about the nature of
machine intelligence or how to improve it.

One reason that metrics of performance
(and perhaps, of intelligence) are needed is that
they directly address the fact that it has been
difficult to compare intelligent systems with one
another, or to verify claims that are made for
their behaviors. Another reason is that having
measurements of qualities of any sort of entity
provides a concrete, operational way to define
the entity, grounding it in more than words

alone. All of these aspects - comparability,
verifiability, and operational grounding - were
undoubtedly at least part of what Lord Kelvin
meant about measurements providing a feeling
that one understood a concept in science. (See
the preamble to this workshop [Meystel et a/ 00]:
"When you can measure what you are speaking
about and express it in numbers, you know
something about it.")

The measurements that form the primary
topic of this paper are of a different type. They
are ones that look ahead to the future, when the
intelligent systems or artificial intelligence” field
is more mature. The notion of mature field is
defined here in terms of scientific theories that
predict the performance of the systems on the
basis of the underlying science. It is suggested
that really valuable measurements require
reliable predictions of this scientific sort, rather
than just ways to compare the techmological
artifacts based on the science. To do this, it is
necessary to develop theories containing
measurable theoretical constructs, as will be
discussed below.

The discussion of metrics for attributes of
theoretical constructs herein does not conflict in
any way with the idea of overall system
measurements, comparisons, or benchmarks,
which are useful for the purposes mentioned
above. In fact, it is a philosophical problem to
decide where theoretical constructs stop and
empirical constructs begin. Measurements of
artifacts will be referred to as surface
measurements, those of a more theoretical
nature as deep measurements, terms borrowed
from Noam Chomsky’s [65] terms for levels of
syntactic description. The question of “how
deep” can be left open at this time. This paper
advocates looking for measurable theoretical
constructs at the deeper level that will predict
surface behaviors at the level of the system or
subsystem, or of an entire artifact.

" The latter term will be used herein because the
shortened form, “AI” is more common than “IS”.
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The remainder of the paper explains the
form that we will expect for Al theories in the
future if they are to qualify as scientific theories
and suggests theoretical constructs that may have
measurable properties. It will discuss existing
constructs that are developing as candidates for
deep metrics and how they may relate to surface
measurement. It will compare them to constructs
in existing scientific theories at deep and surface
levels. Tt will suggest that they will naturally
relate to constructs from the artificial and natural
sciences, specifically from cognitive science and
computer science.

Computation Centered and
Centered Approaches to Al

Cognition

At all levels, from surface to deep, the
constructs to be measured may depend on the
approach taken to AL There are two
distinguishable approaches that have been taken
over the years, which we will call “computation
centered” and “cognition centered”’. The
computation centered approach focuses on how
certain tasks can be accomplished by artificial
systems, without any reference to how humans
might do similar tasks. We do not usually think
of numerical calculation as Al, but if we did, we
would have to think of the way it is done as
computation centered. There is no particular
reason to make it cognition centered.

In the cognition-centered approach to Al
the tradition is to discover human ways of doing
cognitive tasks and see how these might be done
by intelligent systems. Sometimes the
motivation for this approach has been to try to
find plausible models for human cognitive
processes (cognitive simulation), but for Al
purposes, it has often been a matter of using
human clues to try to accomplish the
computation centered approach. Some
researchers feel that developing the artifacts
using cognitive ideas may lead to more robust Al
systems (using “robust” in the sense that the
system is not narrow or “brittle” in its intelligent
capabilities). But it is a natural way to think
about the developing Al capabilities, since not
all areas related to intelligent activities have been

" In the email exchange leading up to the
Workshop, a third approach, “Mimetic
Synthesis”, whose prime concern is the “Turing
test” one of representing a computer to a human
user as if it were another human, was
distinguished from the two mentioned by Robby
Garner. It is a good distinction, though like the
others, the boundaries are not always clear.

explored and reduced to mathematical methods
to the extent of numerical calculations, or even
of mathematical logic, which might directly
facilitate a computation centered approach.

Mathematical logic makes an interesting
case for pointing out that most Al researchers in
practice blend the computation centered and
cognition centered approaches, since it is
formalized, yet still can be approached in a
cognition centered way. Computers actually
implement mathematical logic, which is essential
in control statements of programming languages.
However, actually proving theorems in logic
(beyond propositional logic, where truth-table
methods can be used), is a creative intelligent
activity. There, things become more complex, in
different ways. The first complexity is that is a
creative activity and we do not really understand
even how people do it.  Secondly, it is
informationally complex: there are inherent
undecidability problems in logics of sufficient
richness for most interesting purposes.

In attempts to make it easier for humans to
prove theorems, natural deduction methods were
invented by Gentzen [34] and developed by a
number of people, notably Fitch [52]. In a sense,
natural deduction can be thought of as a
computation-oriented  version of theorem
proving, taking away some of the mental work of
creativity. But this does not change the inherent
informational complexity problems, which
provide inherent limits on computability.

Going beyond logic to general problem
solving one finds some empirical studies of
effective ways in which humans do it that
antedate the computer. One of them, means-ends
analysis, was codified in the General Problem
Solver (GPS) program of Newell and Simon.
[63] (See also Ernst and Newell 65]. For
programs in the GPS era, it was in the spirit of
that work to attempt measurement of the extent
to which the program could mimic human
behavior. This was done by also studying verbal
protocols of people solving the problem. Any
way of comparing those to the performance of
the program was still pretty much a surface
measurement. Such surface measures of
cognitive performance, are also the heart of the
Turing test [Turing 50], but do not tell us much
about what is happening deeper in the system, as
Joseph Weizenbaum showed with Eliza [66]
(and emphasized in an ironic letter [74]). In
more recent times, case-based methods have
been advocated [Kolodner 88] as relating to the
way some people solve problems and they do

50



look very promising. Some of the constructs
from these problem-solving methods will be
mentioned below.

Though computation centered and cognitive
centered  approaches blend well, the
measurements that occur to the developers in the
two approaches will naturally differ, and this is
particularly true as one tries to go to a deeper
level by using constructs that are based either on
cognition or on computation. In other words, Al
may have measurable constructs coming from at
least two different sources, the computation side
and the cognitive side. This fact has some
interesting implications as one looks at the
measurement of deeper constructs, which may
have to be reconciled with both approaches to be
meaningful.

The Structure of Scientific Theories

Today’s views of scientific theory have
changed from those held in the 19" Century,
Lord Kelvin’s time. The bare-bones version of a
scientific theory today is that it consists of a
model composed of abstract theoretical
constructs and a calculus that manipulates these
constructs in a way that can account for
observations and accurately predict the value of
experiments. The model is as central today as
was the notion of measurement to Kelvin. The
theoretical constructs have a relation with
observed entities, properties and processes that
may be quite abstract, not necessarily readily
available to human senses, but following directly
from calculations based on the theory. There are
a number of principles applied to a model that
give us increased confidence in the theory, but
the one most relevant here is that we can
measure the observed entities to confirm the
predictions of the theories. So Kelvin’s concern
has been preserved, but augmented, in today’s
view of theories.

It is relevant to observe that the “calculus”
mentioned above is used in the dictionary sense
“a method of computation or calculation in a
special notation (as of logic or symbolic logic)”.
That means that it may be numerical or non-
numerical. In fact, as Herb Simon and Allen
Newell [65] pointed out, there is no reason that
the calculus cannot be expressed in the notation
of a computer program, the better to speed its
manipulation of the theoretical constructs.

For scientific theories in Al to be
respectable, there will be certain requirements on
them, and these affect whether they are accepted

or not and whether the theories in which they
occur are accepted. The late Henry Margenau
had a pragmatic treatment of these requirements
in his book 7The Nature of Physical Reality
[Margenau 50]. A working Physicist as well as a
philosopher, Margenau stressed that no amount
of empirical evidence was scientifically
convincing by itself, since it did not specify a
unique model; and he also stressed the need for
the binding of theoretical constructs to one
another in a "fabric". This fabric was made up of
theory and of mappings to empirical data. The
theory was convincing to the degree that certain
criteria were met - not a "black and white"
situation, but one of degree. One of the criteria
was the extent to which the models and
constructs were extensible to larger and larger
areas of scientific endeavor. As the fabric of the
theory became larger and stronger, it became
more difficult to rip it asunder.

Perhaps our emphasis on finding metrics can
solidify the theoretical constructs of the field, as
well as providing a means of measuring
progress. The key to doing this is not to think of
evaluation only as measurement of some
benchmarks or physical parameters
(“behaviors™) that are manifested in the
operation of the systems being evaluated. We
need to be thinking in terms of the inner
workings of the systems and how the parameters
within them relate to the measured externally
manifested behaviors.

One of Lord Kelvin's special interests was
temperature. Temperature is of course
something that we experience, something not
wholly abstract. Certain physical properties are
related to temperature, and the most easily
observed is freezing and boiling of water. It took
some scientific discovery to realize that these
phenomena always take place at the same
temperature (with a few reservations, like
altitude and purity of the water), but still, those
are concrete embodiments. Temperature has
been a subjective attribute during most of the
history of mankind, but the scientific notion of
temperature is a theoretical construct, even
though it has a close correspondence to
subjective experience. The particular metrics
chosen related to water freezing or boiling (in
Celsius) and the "coldest" temperature that could
be achieved with water, ice and salt (in
Fahrenheit). Lord Kelvin took the amazing step
of developing a notion of temperature that is
really abstract. His zero point of minus 273.15
degrees Celsius has never quite been reached,
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and is far below what any person could
experience. Yet it is very real as a scientific
construct, one that is part of the fabric of
physical science and ties various aspects of
science together in that fabric.

Other important constructs in physical
theory, too, like mass or gravity, are theoretical
in nature, even though they can be tied to human
experience. It was only in recent physics history
(assuming that physics started with technologies
like axes and spear throwers), in which this was
fully understood, and we owe that understanding
to bits of inspiration on the part of Galileo and
Newton. Having only half a century of Al
history to look back on, we cannot really expect
to have such a firm fabric of theoretical
constructs stitched together. However, some
ideas will be given below, after a comparison of
Sciences that study natural and the artificial
systems.

Sciences of the Artificial and their relation to
Natural Sciences

Herbert Simon came to the conclusion that
there was a place for what he called “Sciences of
the Artificial” in his important book [69]. He did
not invent the study of artifacts in a systematic
manner, but he realized accurately and acutely
that that artifacts could be subjects of “real
sciences”, with deep theories of the sort that exist
in natural sciences. We will now consider some
of the implications of this idea.

The boundaries between sciences of the
artificial and natural sciences are not clear-cut in
practice because nature colors human artifacts,
determining their possibility and their features.
The “engineering sciences”, the portions of
engineering that has been formalized in the sense
of that they can predict the behavior of artifacts,
including aspects such as stability and strength
can be considered sciences of the artificial. The
reason that this is not remarked upon more often
is that they have called upon physical sciences
more and more over the centuries to aid the
“ingenuity” that gives the profession its name.

Linguistics is a science of the artificial.
Human language is the artifact that it studies.
But of course, the properties of the artifact are
shaped by the natural properties of human
learning and cognition, human hearing and
speech in many ways. In the domain of
phonetics, for example David Stampe’s “natural
phonology” [Stampe 73, Donegan and Stampe
79] characterizes some of the interactions

between language as an artifact and as a natural
phenomenon. We do not understand even yet the
extent of the interaction between linguistics and
human cognition. Is there an LAD (language
acquisition device) [Chomsky 75] innate in
humans that is specific to language, or is the
learning of language based on the same
principles as such other acquired systems as
visual perception? Nobody knows for sure; but
whatever the case, the nature of the world and
the nature of learning processes must affect

language.

Computer Science is a science of the
artificial. Certainly, this is true insofar as it
studies computers, which are artifacts; but also to
the extent that it studies algorithms, which are
human creations, too. The main subject studied
in much of Computer Science is not computers
but information, and the “state”, which is all the
relevant information about a system at a given
time, is therefore a fundamental theoretical
construct. Information is a theoretical construct
that is also fundamental in the natural sciences,
but whose significance as a theoretical construct
has only become apparent in this century, as its
relationship to entropy and its role in quantum
theory have been realized. So again, Computer
Science has both artificial and natural parts

Economics, another science of the artificial,
studies a major artifact, the economy, and
looking at this science of the artificial can
provide some insight into the position of Al as a
science of the artificial, and of the role of
measurable theoretical constructs. It is from
economics that an example in the next section is
drawn.

Predictive Measurement in a Science of the
Artificial - An Example from Economics

Economics has struggled for longer than Al
or computer science has existed to find
theoretical constructs that have predictive power.
It deals with large amounts of aggregated data,
so the empirical data are statistical in nature. As
of this date, economic theory is still not as
crystal-clear as physics in terms of the role of its
theoretical constructs, but its theoretical
constructs, measured by expensively-gathered
data by governments and multi-governmental
agencies, are used regularly.

Recently, the U.S. Federal Reserve has been
aggressive in raising interest rates because low
“employment rate” (measured by job creation
and unemployment data) and “rapid economic
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growth” (measured by GDP change and other
data) are, in their models, considered predictors
of higher inflation. Somewhere in the complex
equations that describe the relationship between
these theoretical constructs, and the construct
“inflation” (as measured by PPI, CPI, and other
data), it has recently been noticed that there is a
need for the construct “productivity”. Economic
theory must relate these constructs and related
ones: interest rates, demand for money and
goods, money and commodity supply, savings
rate, etc.

The definition of the constructs mentioned
above is still hazy, and the relations among them
are not mathematically precise. Some models
are incorporated in complex computer models.
But they are getting better, and provide an
example of the sort of prediction that is desirable
for AL

Surface Measures and Theoretical Constructs
in AI - Some Examples

The sort of predictive ability that economists
want, we would like to see in Al, too. If we have
theoretical constructs at some deeper level, we
can also use the theories of which they are a part
to simulate or predict mathematically what
happens if we increase or decrease parameters
related to those constructs. It is a thesis of this
paper that there are theoretical constructs that
can predict system performance measured in
terms of surface measures. At this point in the
development of Al as science, it is hard to say
just exactly what they would be, but some ideas
can be drawn from today’s Al and related
subjects.

An Example Construct: Robustness

A surface measurement that could be very
valuable across a variety of systems is some
measure of robustness — the ability to exercise
intelligent behavior over a large number of tasks
and situations. From a computation-centered
standpoint, if systems become robust, Al
progress would be easier to see. From a
cognition-centered standpoint, a system can
never really be intelligent if it is not robust. (One
way to think of a measure of intelligence in a
single system would be as a measure of
performance, robustness and autonomy.) The
surface way to determine the robustness of a
system seems would be to try it on a number of
tasks and see how broad its methods are. But
what makes intelligent systems robust? Learning
ability, experience, and the ability to transfer that

experience to new situations are all things that
come to mind. A rough sketch of how
measuring theoretical constructs in those areas
might give us a predictive figure for developing
robust systems is given below.

Robustness: Learning?

If learning can make systems more robust, it
should be interesting to measure the strength of
the system’s learning component. How easily
does it adapt the system to a new situation?
Unsupervised learning has wide applicability,
but it can basically only determine clusters of
similar items. Supervised learning must be
presented with exemplars to learn relations,
which seems not to be enough for a machine to
extend its own capabilities. Reinforcement
learning (RL) is a blend of both cognitive and
computational centered Al It started out as a
model of classical conditioning, but turned out to
be applied dynamic programming. There are a
number of different techniques within RL, all of
which have many possible applications. Neural
nets or other approaches may be used. The
theoretical constructs include the state space
chosen, the reinforcement function, and the
policy. The field is becoming quite
sophisticated, and there are known facts about
the relation of these to outcomes in particular
cases [Mahadevan and Kaelbling 96]. Suppose
that a reinforcement learning system constitutes
a part of the intelligence of an intelligent system.
There should be some way of predicting how
that system would do upon encountering
problems of a certain nature. By knowing how it
chooses the concepts in its system and how they
react on problems of that type, one can provide a
partial evaluation of how effective the learning
system would be. By obtaining such figures for
all such subsystems, one could relate them to the
performance of the full intelligent system. There
is much work to be done in that direction.

Under certain circumstances, one can
imagine learning extending robustness; but
having to learn each new variations of a problem,
even by reinforcement, is unlikely to lead to
robustness quickly. It is expected that reinforced
behaviors learned in one situation might be
identical to those needed in another system, so
this may lead to more rapid or better learning in
the second situation. One approach to this is to
condition behaviors that are not built into the
system initially, as explored by Touretzky and
Saksida [97]. But, still, one would like to have
more general ways of reusing “big pieces” of
learned knowledge.
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Robustness: Transfer of Learning?

Transfer of learning is a phenomenon that
we may be able abstract to theoretical constructs
that can help to predict robustness. It is still not
a deep measure, so it will then be important to
predict transfer of learning from deeper
constructs which will be mentioned below. At
present, it is a research challenge to build
transfer of learning into systems. But it is
possible to see how one could test for it.

As far as measurement, here is roughly how
transfer of learning might be measured:

1. Machine performance is measured on Task
1. The score is P(t1, T1)) = performance at
time t1 on Task 1. P is some suitably broad
performance measure.

2. Performance is measured on Task 2 without
learning (this being an artifact where we can
control learning) to obtain P(tl, T2)
(keeping the time variable the same because
the same machine abilities are assumed
without learning even if the measurements
are not simultaneous).

3. Note that if the measure is to have a
meaning, previous training that might affect
T1 or T2 must be controlled for, which
could be difficult.

4. The machine is now allowed to perform task
T1 in which it learns, achieving better
performance at some time t2, i.e. P (t2, T1)
> P (tl, T1).

5 It is then tested on T2, and the question is
whether P (12, T2) > P (tl, T2) without
having done additional learning on Task 2.

If indeed P (2, T2) > P(tl, T2) in some
quantifiable way, the system has achieved (at
least locally) one of the goals of Al the transfer
of learning from T1 to T2. The amount of
transfer can be measured by the amount of
improvement on task2 as a function of the
amount of training on task T1. Let us assume
that we can describe this by some transfer
effectiveness function, E for the system being
tested. Let us say E(T1, T2, t) gives “the
effectiveness of training on T1 for time t in terms
of transfer toT2”. We could describe this by a
graph of performance on T2 as a function of
time being spent on T1.

Developing such a measure of transfer of
learning and getting it accepted is not simple. To
be useful, we would need a way of comparing T1
and T2, to be sure that the second task is not just

a subtask to the first. Difficult or not, defined
measurements such as these are steps toward
understands the construct “transfer of learning”
and achieving it in artifacts. The measurable
transfer construct would, in turn, help to provide
a measurement of robustness, since learning
transfer can make a system more robust. It is a
step toward measurement of intelligence, at least
by some definitions of intelligence, and,
intuitively, at least, would have some predictive
power.

How might we go about defining the
similarity of T1 and T2, as suggested above? We
would have to decide what we mean by
similarity of task. An interesting essay in this
area is “Ontology of Tasks and Methods”
[Chandrasekaran, Josephson and Benjamins

[98]].

Various candidates  for  potentially
measurable constructs that could be used to
produce transfer but also to relate transfer to
other phenomena are mentioned in a book edited
by Thrun and Pratt [98], who have both had a
research interest in learning-transfer processes.
From the computation side comes the possibility
of changing inductive bias. From the cognition-
centered side, there is generalization from things
already learned; but overgeneralization can be a
major problem in learning, so it needs to be
constrained. (Some simple constraints on
overgeneralization in language learning are
discussed in [Reeker 76].)

Robustness: Case-Based Reasoning?

Case-based reasoning is an intuitively
appealing technique that was mentioned earlier
in this paper. The idea is that one learns an
expanding set of cases and stores the essentials
of them away according to their conventional
features. They are then retrieved when a similar
case arises and mapped into the current case.
Potential theoretical constructs include indexing
and retrieval methods for the cases, case
evaluation and case adaptation to the new
situation. The cases could also be abstracted and
generalized to various degrees, to a model.

Case-based reasoning is important for
cognition centered Al. It is intuitively the way
many people often figure out how to do things,
and is thus embodied in the teaching methods of
many professional fields — law, business,
medicine, etc. It provides a launching pad for
creativity as well, as mappings take place from
one case to an entirely new one. Perhaps the
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new case is not really concrete, but a vague new
idea. Then the mapping of an old case to it may
result in a creative act — what we usually call
analogy. Analogy, metaphor in language, is a
rich source — absolutely ubiquitous — of new
meanings for words, and thus of new ways to
describe concepts, objects, actions. Perhaps one
key to robustness is the ability to use analogy.
Four interesting papers by researcher in the area
can be found in an issue of American
Psychologist [ Gentner ef a/ 97 |.

Existing Surface and Subsurface Performance
Measures

Researchers in  text-based information
retrieval (IR) have traditionally considered
themselves not to be a part of the Al field, and
some have even considered that artificial
intelligence was a rival technology to theirs; but
there is an overlap of interest. It is worth noting
that IR has had a useful surface measure of
system performance that has guided research and
allowed comparison of technologies.  The
measure consists of two numbers, recall and
precision [Salton 71]. Recall measures the
completeness of the retrieval process (the
percentage of the relevant documents retrieved).
Precision measures the purity of the retrieval (the
percentage of retrieved documents judged
relevant by the people making the queries). If
both numbers were 100%, all relevant documents
in a collection would be retrieved and none of
the irrelevant ones. Generally, techniques that
increase one of the measures decrease the other.
Real progress in the general case is achieved if
one can be increased without decreasing the
other.

For the IR community, better recall and
precision numbers have both shown the progress
of the field. They also show that it is still falling
short, keeping up the challenge, especially as the
need to use it for very large information corpora
rises. In addition, they provide a standard within
the community for judging various alternative
schemes. Given a particular text corpus, one can
consider various weighting schemes, use of a
thesaurus, use of grammatical parsing that seeks
to label the corpus as to parts of speech, etc., to
improve the retrieval process. The interesting
thing is to relate these methods and the
characteristics of the corpus to precision and
recall, but so far that has not been sharp enough
to quantify generally.

Related to information retrieval is automated
natural language information extraction, which

tries to find specified types of information in
bodies of text (often to create formatted
databases where extracted information can be
retrieved or mined more readily). A related but
different (cost-based) measure was defined
several years ago for a successful information
extraction project [Reeker, Zamora and Blower
83]. One measure was robustmess (over the
texts, not different tasks as in the broader
intelligent systems usage discussed earlier). This
was defined as the percentage of documents out
of a large collection that could be handled
automatically. The idea was that some
documents would be eliminated through
automated  pre-screening  (because  those
documents were not described by the discourse
model the system used) and relegated to human
processing. Another measure was accuracy (the
percentage of documents not eliminated that
were then correctly processed in their entirety,
by the system). Yet another was error rate (the
percentage of information items that were
erroneous — including omitted - in incorrectly
handled documents). From this more detailed
breakdown, estimates of the basic cost of
processing the documents, based on human and
machine processing costs and costs assigned to
errors and omissions, was derived. The measure
could be used to drive improvements in
information extraction systems or decide whether
to use them, compared to human extraction
(which also has errors) or to improve the
discourse model to handle a larger portion.

For information extraction projects, it was
further suggested that the cost of erroneous
inputs might drive a built-in “safety factor” that
could be varied for a given application [Recker
85]. This safety factor was based on linguistic
measures of the text (in addition to the discourse
model) that could cause problems for the system
being studied. The adjustable safety factor could
be built into the prescreening mentioned above.
In other words, the system would process
autonomously to a greater or lesser degree and
could invite human interaction in applications
where the cost of errors was especially high. It
was suggested that the system would place
“warning flags” to help it make a decision on
screening out the document, and these could also
aid the human involved. Although this was a
tentative piece of work, the idea of tying a
surface measure (robustness) into the underlying
properties of the system is exactly like tying
measurable surface properties into underlying
theoretical constructs. The theoretical constructs
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mentioned in this case were structural or
semantic ones from linguistics.

From the area of software engineering
comes another tradeoff measure that is worth
mention. The author did some work on ways of
providing metrics - surface metrics, initially - for
program readability (or understandability).
Briefly, studies of program understanding had
identified both go-to statements and large
numbers of identifiers (including program labels)
as problems. At the same time, the more
localized loop statements could result in deep
embeddings that were also difficult to understand
for software repair or modification. The vague
concept of readability could be replaced by a
measure of go-to statements and maybe also one
of the number of different identifiers. This
particular study suggested depth of embedding as
a problem and also suggested a tradeoff between
depth of embedding a metric called identifier
load. Identifier load was a function of the
number of identifiers and the span of program
statements over which they were used. Identifier
load tended to increase as depth of embedding
was reduced by the obvious methods.

There were a number of similar software
metrics studies, during the 1970s, in particular.
This approach, however, was part of an attempt
to look at natural language for constructs that
might be of relevance in programming languages
and programming practice [Reeker 80]. The
depth measure was based on an idea of Victor
Yngve [60], which came out of his work in
linguistics - an idea that retains a germ of
intuitive truth. Yngve had in turn related his
natural language measure of embedding depth to
measures of short-term memory from cognitive
psychology. Whether these relationships turn
out to be true or lead to related ideas that are true
or not, they illustrate how theoretical constructs
can stitch Al, computer science, and other
artificial and natural sciences together. They
also illustrate the quest for metrics that can firm
up the foundations of the sciences.

More Constructs To Be Explored

There are many more existing theoretical
constructs that have arisen within Al or been
imported from computer science or cognitive
science that beg to be better defined, quantified,
and related to other constructs, both deep and
surface.

Means-ends analysis and case based
reasoning have both been mentioned as forms of
problem solving. How do these cognitive

characterizations of problem solving relate to
one another? At a deeper level is the construct
of short term memory mentioned in the previous
section in relationship to Yngve’s depth. How
does short-term or working memory relate to
long term memory and how are the two used in
problem solving? The details are not known.
The size of a short-term memory may not be as
relevant in a machine, where memory is cheap
and fast. But we cannot be sure that it is not
relevant to various aspects of machine
performance because it is reflected at least in the
human artifacts which the machine may
encounter . For instance, in resolving anaphora
in natural language the problem may be
complicated if possible referents are retrieved
from arbitrarily long distances

A similar problem arises from long-term
memory if everything ever learned about a
concept is retrieved each time the concept is
searched for. This can lower retrieval precision
(to use the term discussed earlier for machine
retrieval) and cause processing difficulties on a
given problem. It may be that the notion of
bounded rationality is a virtue in employing
intelligence. = Are we losing an important
parameter in intelligence if we try always to
optimize rationality? For Al system, anytime
algorithms  and  similar  constructs  for
approximate, uncertain, and resource bounded
reasoning have been developed in recent years,
and hold a good deal of promise [Zilberstein 96].

An interesting theoretical construct arising
out of Al knowledge representation and the
attempts to use it in expert systems and agents
and for other purposes is that of an ontology.
“Ontology” is an old word in philosophy
designating an area of study. In Al it has come
to designate a type of artifact in an intelligent
system: The way that that system characterizes
knowledge. In humans, ontologies are shared to
a large degree, but probably actually differ from
every person to every other, despite the fact that
we can understand each other. Are some
ontologies indicative of more intelligence than
others in ways that we can measure? One
suggested criterion for high intelligence is the
ability to understand and use very fine
distinctions (or to actually create new ones, as
described in Godel’s memorandum cited by
Chandrasekaran and Reeker [74]). Is an
ontology’s size important, or its organization, or
both? Can one quantify a system’s ability to add
new distinctions?
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A related issue is vocabulary. Many people
think that an extensive vocabulary, used
appropriately, is a sign of intelligence, or at least
scholastic aptitude. In computer programs that
do human language processing, the vocabulary
consists of a Jexicon that generally also has
structural (syntactic) information for parsing or
generating utterances containing the lexical item
and meaning representations for the lexical item.
The lexicon can be much larger than any
human’s vocabulary; but for the vocabulary to be
used appropriately for language production or
understanding, it still falls far short of the human
vocabulary. For that to be improved better
techniques of semantic mapping are required,
including links to ontologies and methods of
inferring the ontological connections and of
idiosyncratic aspects of speakers with which a
conversation is taking place. Is the vocabulary an
indication of the size of the ontology and the
distinctions it makes, or vice-versa? Nobody
knows; but better theories of how they link up
are needed for both understanding and fully
effective use of human language by intelligent
systems.

Another cognitive concept that is still a
mystery is creativity, certainly a part of
intelligence, or at least of high intelligence.
Does the ability to add entirely new concepts,
not taught, constitute creativity? How does one
harness serendipity to develop creativity? Is
creativity linked with sensory cognition, the
cognitive phenomena related to senses, such as
vision, including perception, visual reasoning,
etc. There is a need for deep theoretical
constructs underlying notions like creativity, and
for measures of these constructs and their
attributes [Simon 95, Buchanan 00].

Turning to computational constructs, we
notice that much of the Al described above takes
place through various forms of search. Already
there exists a pretty good catalogue of variations
on search and how to manage it, in which a good
deal of theory is latent. Some of the search is of
a state space, involving the ubiquitous state
concept basic to theoretical computer science.
Search is also coupled with pattern matching,
which underlies many of the methods mentioned
earlier in this paper.

The potential constructs mentioned here are
just a sample of the ones already available in
Artificial Intelligence, and to them should be
added others found in some of the major works
of Newell and Simon on Problem Solving and

Cognition [Newell and Simon [65], Newell
[87]].

Summary and Author’s Note

The development of a true science of
artificial intelligence is something that has
concerned the author for a long time. It has been
encouraging to see the development within the
field of interesting and non-obvious theoretical
constructs.  This paper has suggested that
theoretical constructs with attributes that we can
measure are especially valuable and it has
suggested a number of such candidates. The
paper suggests that we enlist Lord Kelvin’s
emphasis on measurement in choosing such
constructs. These same measurable theoretical
constructs will in many cases relate (at least, at
deeper levels) to those of cognitive science,
computer science, and other sciences. They will
help predict measures at the surface that can be
used to provide metrics for the performance (and
through that, the intelligence) of intelligent
artifacts. We should have in mind the quest for
such measurable constructs as we move forward
in creating intelligent artifacts.
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ABSTRACT

An essential feature of intelligence is the ability to make autonomous
choices. A new paradigm of satisficing decision making incorporates
two utilities for decision making, rather than the usual single utility
that is characteristic of optimal decision making. These two utilities
may be used to define figures of merit for the intellectual power or
fitness of the decision maker as it functions in its environment. These
utilities may also be applied in group settings. In particular, societies
of negotiatory decision makers may undergo considerable tension as
they attempt to reach a compromise that is acceptable to the group as
a whole and to all members of the group.
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1. INTRODUCTION

There are three issues that must be addressed in the design of
an intelligent decision system: (a) defining the alternatives, (b)
defining the preferences, and (c) choosing between the alterna-
tives as a function of the preferences. The first two issues are
highly dynamic. Alternatives may appear and disappear and
preferences may change. Much of the study of intelligent sys-
tems is properly focused on these dynamics. At the moment of
truth when a decision must be made, however, we must assume
that the alternatives and preferences have been defined, and all
that remains is to make the choice. This paper focuses on this
last, consummate step.

The ability to make decisions is essential to intelligent be-
havior. Indeed, the word intelligent comes from the Latin roots
inter (between) + legere (to choose). We thus assume that there
is only one essential characteristic of intelligence in man or
machine—an ability to choose between alternatives.

Choices between alternatives, or decisions, are usually jus-
tified by the maximization of expected utility, an approach Si-
mon calls substantive rationality [8]. We argue that for mul-
tiple agents, especially those in dynamic environments, the re-
quirement for substantive rationality is too demanding. First,
although a solution may exist, the information or computing
power necessary to find it may be unavailable. We will often be

forced to fall back on what Simon terms procedural rationality,
or the reliance on heuristic or ad hoc procedures defined by an
authority. Second, and more serious, is that the existence of an
optimal solution may be in doubt. Von Neumann-Morgenstern
game theory shows that for many games a solution that is si-
multaneously best for the group and for each individual in the
group simply does not exist. This seems to imply that a theory
of group decisions satisfactory for the synthesis of coordinating
agents cannot be obtained by a straightforward maximization of
utility.

We are thus motivated to consider definitions of rational-
ity upon which we can build a more robust theory of intelligent
multi-agent decision making. We hold that the fundamental
obligation of a rational decision maker is to make decisions that
are, in some well-defined sense, good enough. Historically, the
study of good enough decisions was first formalized by Simon,
when he introduced the term satisficing to characterize deci-
sions that achieve the decision maker’s aspiration level [6,7].
This notion of satisficing defines quality according to the crite-
ria used for substantive rationality, but evaluates quality against
a standard that is chosen more or less arbitrarily. It essentially
blends substantive and procedural rationality, and is a species
of what is often termed bounded rationality.

Rather than blend the two extremes of substantive and pro-
cedural rationality a la Simon, our work explores an alternative
which leads naturally to a set of satisficing solutions that is con-
sistent with Simon’s intent. It also guarantees the existence of
jointly rational decisions, and seems to be a natural vehicle for
the design and synthesis of intelligent decision systems.

We start by assuming that the most primitive way to make
decisions is to make intra-option comparisons in the form of
dichotomies. We define two distinct (and perhaps conflicting)
sets of attributes for each option and to either select or reject
the option on the basis of comparing these attributes. Such di-
chotomous comparisons are intrinsic, since the evaluation of
an option’s merits is not referenced to anything not directly re-
lated to the option, including other options. They are also local
comparisons; it is not possible to form a global ordering the
options on the basis of such comparisons. An intrinsically ra-
tional choice is one for which the decision maker’s benefits are
at least as great as its costs. We define a satisficing decision
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as one that is intrinsically rational,’ because these options are
good enough, in the sense that their attributes have been favor-
ably compared with a standard. We differ from Simon only
in the standard used for comparison: the positive and negative
attributes of each option, versus externally supplied aspiration
levels.

Intrinsic rationality appears to be a weaker notion than sub-
stantive rationality. Although it identifies all options that are,
in the sense we have defined, good enough, it does not insist
on a unique solution. At the moment of truth, the decision
maker may choose any of the satisficing options with the as-
surance that it will at least get its “money’s worth.” In practice,
however, the advantage of a theory founded on substantive ra-
tionality may be more illusory than real. Objective functions
themselves are often created by an ad hoc combination of pref-
erences into a single performance index, and this combination
can be, and usually is, manipulated until satisfactory behavior
is achieved. Thus, even optimization approaches rely in their
application on satisficing notions, however informally.

As mentioned earlier, our approach to intrinsic rational-
ity requires the definition of two preference functions, one to
characterize the desirable attributes, and one the undesirable
attributes, of each option. An option is desirable to the degree
that it achieves the goal. It is undesirable to the degree to which
its adoption consumes the decision maker’s resources, such as
energy, safety, or other costs. Separate preference functions
permit the development of metrics to evaluate how suited the
decision maker is to function in its environment. Intuitively,
if a decision maker has options available to it that achieve its
goal with low cost, it is well-suited for its environment. On
the other hand, if it must incur great cost or undergo great risk
to achieve its goal, it is clearly not as well suited. Although
the goal may be achieved equally well in either case, there is
a fundamental difference in the ability of the agent under the
two scenarios. This difference may not be easily discernible
under the substantive or procedural rationality paradigms, but
it is clearly discernible under the intrinsic rationality paradigm.

In the following we first summarize the mathematical de-
velopment of satisficing decision theory. We next introduce a
concept of attitude, or disposition, for the agents, and develop
figures of merit for evaluating the equivocation experienced by
the decision maker or decision making system. We then present
a basic negotiation theorem and describe a simple negotiatory
process to converge to a rational compromise. We then finish
with an example and draw conclusions.

2. SATISFICING

Von Neumann-Morgenstern game theory is based on a very so-
phisticated paradigm—global optimization. There are a num-
ber of basic problems, however, with optimization-based ap-

'Other researchers have appropriated this term to describe various notions
of constrained optimization In this paper, we restrict our usage to be consistent
with Simon’s original concept

proaches. First, since it is well known that humans are not good
optimizers [1,2, 5], a decision-making system that seeks to ap-
proximate human behavior may be unnecessarily constrained
by insisting on, and only on, optimal performance. Second, op-
timization is a fixed, or absolute concept, in the sense that if an
option is not the best, then it is unacceptable. There cannot be
degrees of optimization. Third, optimization is, fundamentally,
a notion of exclusive self interest, and does not easily general-
ize to settings where it is important to accommodate both group
and individual interests [4]. It is usually impossible to arrive at
a joint solution that is simultaneously best for the group as a
whole and for each member of the group.

Our notion of satisficing, on the other hand, does not insist
upon optimal performance, and in return for this concession it
logically permits degrees of satisficing and the accommodation
of both group and individual interests. By adjusting the tradeoff
standards between cost and benefit, it may be possible to find a
joint solution that is simultaneously good enough for the group
and good enough for each member of the group. This is the
fundamental goal of negotiation.

Our approach is to employ the mathematics, but not the
usual semantics, of probability theory. As discussed in [9, 10]
we may encode the preference relationships via mass functions,
which we term the selectability and rejectability functions. By
so doing, we are able to account for conditional preferences
(analogous to conditional probabilities) and to express both
joint (group) and marginal (individual) preferences.

We formalize this procedure as follows. Let U; denote the
option set for the ith agent (we will assume Uj; is of finite cardi-
nality),7 =1,... ,N,letU = U; x --- x Uy denote the prod-
uct space of joint options, and let u = {uy,... ,un}, where
u; € U;, denote an option vector. Let pg(u) indicate the de-
gree to which the joint option u is successful in achieving a
group goal. We require that ) ; ps(u) = 1 and ps(u) > 0,
so ps is a mass function, which we term the joint selectability
mass function. Also, let pr (1) indicate the degree to which the
joint option u consumes resources, and require this to also be a
mass function, which we will term the joint rejectability mass

Sunction. Next, let pg;: U; — [0,1] and pg,: U; — [0,1] be

marginal selectability and rejectability mass functions, respec-
tively, derived from pg and pr by appropriate summation. For
a discussion of how these joint and marginal mass functions
may be practically constructed, see [9, 10].

These mass functions define a dichotomy for each option,
that is, they partition the attributes of the option into two cat-
egories and provide a measure of support for each class of at-
tributes. We evaluate each dichotomy by comparing the se-
lectability (benefit) to the rejectability (cost) of each option. By
so doing, we define the jointly satisficing set

2y = {u € U: ps(u) > bpr(u)},
and define the individually satisficing sets

i = {u € Ui: ps, (u) > bpg, ()},
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i = 1,...,N. The boldness parameter, b, is a constant in
the interval [0, 1], which is nominally set to unity, but may be
decreased under special circumstances to be discussed below.
3, is the set of all joint options that are good enough for the
group, and each X} is the set of all individual options that are
good enough for the ¢th agent.

These sets provide the agent or group of agents with the
ability to make individual or group decisions. If the ith individ-
ual agent is empowered to make its own decision, it may choose
any member of E};. If the group as a whole is to make a collec-
tive decision, it may choose any member of ;. These choices
may be random, or they may be made according to some tie-
breaking procedure.

3. EQUIVOCATION

Human decision makers often make qualitative assessments of
the difficulty, in terms of stress or tension, encountered in mak-
ing decisions. Even if such knowledge does not have a direct
bearing on their immediate decisions, an appreciation of the
difficulty involved in forming the decision is an important as-
pect of the decision-making experience. A decision maker need
not possess anthropomorphic qualities, however, to assess the
difficulty of making decisions, and we do not propose to endow
an artificial decision maker with some sort of ersatz anthropo-
morphic capability. Under our satisficing approach, however,
it is possible to evaluate attributes of the decision problem that
correspond more to its functionality and fitness than to its suc-
cess.

Are decisions easily made and implemented, or do they
tax the capabilities of the decision maker? Such assessments
are not a typical undertaking of classical decision theory. Max-
imizing expectations has no need to concern itself with issues
such as “difficulty.” Nevertheless, choices are not all of equal
difficulty.

By employing two utilities, rather than only one, we may
analyze them to ascertain the compatibility of the attributes of
the preferences. If they are compatible, in that options that con-
serve resources also achieve the goal, then the decision maker
is in a fortunate situation of being content. If the preferences
are incompatible, in that options that achieve the goal also are
highly consuming of resources, then the decision maker is fun-
damentally conflicted. These attributes constitute attitudes, or
dispositions, of the decision maker.

The optimization literature is devoid of discussions con-
cerning the attitude or disposition of the decision maker who,
like the paradigm it employs, is assumed to be dispassionate. It
is simply doing what should be done under the auspices of indi-
vidual rationality, and attitudes or feelings, should they even ex-
ist (and they need not), are completely irrelevant. Furthermore,
to attribute anthropomorphic characteristics to a decision maker
would be seen by many as nothing more than a concocted story
line that is of marginal value if not completely misleading.

3.1. Attitude

It is fortunate if an option that conserves resources (low re-
jectability) also achieves the goal (high selectability)—in this
environment, a decision maker is content. Many interesting de-
cision problems, however, are such that actions taken in the
interest of achieving the goal are expensive, hazardous, or have
other undesirable side effects. A decision maker in this sit-
uation is conflicted. Contentment and conflict are basic dis-
positional states that serve as guides to the decision maker’s
functionality. A situation requiring frequent high-conflict deci-
sions indicates that the tasks are difficult for the decision maker.
Making high-conflict decisions, however, is not a measure of
how well the decision maker is performing—it may, in fact, be
making good, but costly, decisions. It is also true, however, that
a high-conflict environment may result in poor performance be-
cause the decision maker is simply not powerful enough to deal
adequately with its environment. Such a situation might serve
as a trigger to prompt changes, such as activating additional
sensors, or otherwise seeking more information about the envi-
ronment. It may also trigger a learning mechanism to prompt
the decision maker to adapt itself better to the environment.

Since selectability and rejectability are probabilities, it
may be useful to appropriate some of the mathematical machin-
ery of probability theory to aid in interpreting these quantities.
One way to gain some insight is to examine the entropy of se-
lectability and rejectability.

Definition 1 The entropy of a mass function p is

H(p) = =Y p(u)log, p(u).
uelU
m}

Entropy is usually employed in Shannon information the-
ory as a measure of how much uncertainty (randomness or dis-
order) is reduced, on average, as a result of conducting an ex-
periment governed by the mass function [3]. In our context,
however, we wish to provide entropic interpretations for se-
lectability and rejectability that are distinct from the usual prob-
abilistic interpretation.

In assessing selectability, we consider expediency as anal-
ogous to uncertainty. To motivate this interpretation, suppose
u' is implemented. If pg(u’) ~ 1, then log, pg(u') &~ 0 which
is consistent with the notion that little reduction in expediency
occurs if an option with high selectability is implemented. Con-
versely, suppose ps(u’) = 0, but is nevertheless implemented.
Then — log, ps(u') is large, indicating a great loss in expedi-
ency. The entropy of selectability is the average reduction in
expediency that obtains as result of making choices according
to ps.

To interpret the entropy of pg, we consider expense as
analogous to uncertainty. Suppose u’ is implemented. If
pr(u') =~ 1, then log, pr(u') = 0 which is consistent with
the notion that little reduction in expense occurs if a highly re-
jectable option is nevertheless implemented. On the other hand,
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if pr(u') =~ 0 and ' is implemented, then — log, pr(u') is
large, indicating a great reduction in expense. The entropy of
rejectability is the average reduction in expense that obtains as
a result of making choices according to p g.

Entropy is maximized by the uniform distribution; that is,
if p*(u) = £ forall u € U, then H(p*) > H (p) for all mass
functions p over U, and has entropy H(p*) = log, n. A uni-
form pg generates the highest possible average expediency, and
a uniform pr would generate the highest possible average ex-
pense. Consequently, it is useful to take the uniform distribu-
tion as a baseline against which to assess the properties of ar-
bitrary mass functions. Let n be the cardinality of the action
space, U (assumed to be finite for this discussion).

Definition 2 If pg(u) = % (that is, selectability under pg is
equal to selectability under the uniform distribution), then the
option is success neutral. If the selectability mass function
is uniform, then the decision maker’s attitude will be success

neutral. O

Definition 3 If pr(u) = % (that is, rejectability under pg is
equal to rejectability under the uniform distribution), then the
option is conservation neutral. If the rejectability mass func-
tion is uniform, then the decision maker’s attitude will be con-

servation neutral. O

Definition 4 If ps(u) > % (that is, selectability under pgs is
greater than selectability under the uniform distribution), then
the option is attractive with respect to performance relative to
other options—u is expedient. a

Definition 5 If pg(u) > % (that is, rejectability under pg is
greater than rejectability under the uniform distribution), then
u is unattractive with respect to cost or other penalty—u is ex-
pensive. O

The relationship between selectability and rejectability
permits the definition of four dispositional modes of the de-
cision maker with respect to each of its options. Let U be the
set of all possible options.

Definition 6 If u € U is both expedient and expensive, then
the decision maker will desire to reject, on the basis of cost,
an option that is suitable in terms of performance—it will be
ambivalent with respect to u. O

Definition 7 If u € U is both inexpedient (ps(u) < 1) and
inexpensive (pg(u) < ), then the decision maker will be de-
sirous of accepting the option on the basis of cost, but will be
reluctant to do so because of poor performance. The decision
maker will be dubious with respect to u. O

Definition 8 If u € U is expedient and inexpensive, then
the decision maker is in the position of desiring to implement

an option that would yield good performance—a dispositional
mode of gratification with respect to u. a

Definition 9 If u € U is inexpedient and expensive, then the
decision maker will desire to reject, on the basis of cost, an
option that also provides poor performance, and will thus be in
a dispositional mode of relief with respect to u. 0O

These four modes provide a qualitative measure of the way
the decision maker is matched to its task. Gratification and re-
lief are modes of contentment, while dubiety and ambivalence
are modes of conflict. Figure 1 illustrates these regions.

b=1
bs '
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| &)
So
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E_]; CF’R____—
§
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L Pr
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Figure 1: Dispositional regions: G = gratification, A = ambiva-
lence, D = dubiety, R = relief.

Figure 2 illustrates various cases for n = 2, a two-dimen-
sional decision problem. In these plots, the diagonal line repre-
sents the unit simplex, and the ps and pgr values are plotted as
vectors that lie on the simplex.

U2 N pr U2
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Ps

Ui Uy

(@) (b)

Figure 2: Attitude: (a) The decision maker is dubious with re-
spect to u; and ambivalent with respect to us. (b) The decision
maker is gratified with respect to u; and relieved with respect
to us.

3.2.  Figures of Merit

It would be useful to obtain formal expressions to capture some
of the features of the qualitative analysis described in Section
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3.1., where it is qualitatively indicated that as these distribu-
tions become more closely aligned, the decision maker be-
comes more ambivalent and dubious. We propose two mea-
sures that are similar, but not identical.

Diversity One important feature of the selectability and re-
jectability functions, therefore, is their dissimilarity. To obtain
such a measure, we again appeal to the notion of entropy, and
apply the Kulback-Leibler distance measure.

Definition 10 The Kulback-Leibler (KL) distance measure
of two mass functions, say p; and ps, is given by

D(p: [l p2) = 3 pi(u) log; ]fjgz;

uelU

O

The KL distance measure is an indication of the relative
entropy of two mass functions. D(- || -) is not a true metric; it
is not symmetric and does not obey the triangle inequality. It is,
however, non-negative, and it is easily seen that D(p; || p2) =
0if and only if p;(u) = pa(u) forallu € U.

We may apply the KL distance measure to the problem of
ascertaining dissimilarity of the selectability and rejectability
functions by computing the KL distance between selectability
and rejectability.

Definition 11 The diversity functional is:

ps(u)
Z ps(u 10%2 pr()’

uwelU

D(psllpr) =

or, equivalently,

— > ps(u)log, pr(u) — H(ps).

uelU

D(psllpr) =

O

Small values occur when the selectability and rejectability
functions are similar, indicating a condition of potential con-
flict. If they are identical, then the decision maker is in a posi-
tion of wishing to reject precisely the options that are in its best
interest—an unfortunate condition of total paralysis.

Diversity is infinite if there exist options with nonzero se-
lectability and zero rejectability. Such options are free options,
since no cost independent of achieving the goal is incurred by
adopting them (analogy: coasting saves fuel, but may or may
not get you to your destination). Diversity is not a measure of
performance; that is, if one decision maker has a more diverse
selectability/rejectability pair than another, that is not an indica-
tion that it will perform better than the other. It does, however,
provide an assessment of the environment in which the decision
maker operates.

Tension Although the diversity functional provides insight
into the relationship between selectability and rejectability, it
does not afford a convenient comparison in the case where the
decision maker is neutral with respect to either selectability or
rejectability. To develop such a measure, it is convenient to
re-normalize the selectability and rejectability functions. Con-
sider first the case where ps and pgr are mass functions and U
is finite. Let

ps = [ps(u1),...,ps(un)]

Pr = [pr(w),-..,pr(un)]
be selectability and rejectability vectors, and let 4 =
%, ey %] denote the uniform mass function vector, where n is

the cardinality of U. Although these vectors are unit-length un-
der the L, norm, they are not of unit length under the L » norm.
It will be convenient to normalize these vectors with respect to

L,. Let |ps| =
|| The Ly normalized mass function vectors will be denoted
by Ps = T’;—i—l, and similarly for pg and p.

We express the similarity between ps and pgr through the
inner product of the corresponding unit vectors, yielding the
expression 1351")%. This quantity will be unity when ps = pg,
and will decrease as the two mass functions tend toward be-
coming orthogonal, and thus captures some of the properties
we desire to model. If we normalize by the product of the pro-
jections of ps and pr onto the uniform distribution, we tend to
scale up the inner product as the mass function vectors become
distanced from the uniform distribution.

\/PspZ%, with similar definitions for |pg| and

Definition 12 The tension functional is
- T
PsPgr
T(psllpr) = =—F="=%>

psaTpriT

which simplifies into the convenient form:

T(pslipr) = npspr = n Y _ ps(u:)pr(us).
=1

0

Clearly, T'(ps||pr) is positive and bounded by the di-
mension, n. If either the selectability or rejectability is uni-
form, then the tension function equals unity. If the rejectability
function is uniform, then the decision maker is rejectability-
neutral. If the selectability is uniform, then the decision maker
is selectability-neutral. If T'(ps||pr) > 1, then the projection
of selectability onto rejectability is significant, and options that
are desirable are also costly. We may interpret this as a state of
conflict. On the other hand, f T'(ps||pr) < 1, then the projec-
tion of selectability onto rejectability is small, and the decision
maker is in a state of contentment.

A decision maker operating in a contented environment is
well-tuned to its task—decisions that possess high rejectability
also possess low selectability. Such a decision maker should be



expected to achieve its goals with ease, and be adequate in most
situations. A conservation-neutral decision maker will function
much as would a conventional Bayesian decision-maker. If it is
success-neutral, it will function much like a minimax decision-
maker. If the decision maker is both conservation-neutral and
success-neutral, it is completely indifferent to the outcome, and
there is little point in even attempting to make a decision other
than a purely random guess.

4. NEGOTIATION

Negotiation under the individual rationality paradigm forbids
any individual participant, as well as any potential coalition,
from settling for a decision that is below its security, or mini-
max, level. This is a very strong restriction, which can lead to
an empty core and the lack of a rational basis for negotiation.
There are many ways to modify this solution concept to jus-
tify solutions not in the core, such as accounting for bargaining
power based on what a participant calculates it contributes to
a coalition by joining it (e.g., the Shapley value), or forming
coalitions on the basis of no player having a justified objection
against any other member of the coalition (e.g., the bargaining
set). Also, it is certainly possible to invoke various voting or
auctioning protocols to address this problem. We do not criti-
cize the rationale behind these refinements to the basic theory,
or the various extra-game-theoretical considerations that may
govern the formation of coalitions, such as friendship, habits,
fairness, etc. We simply point out that to achieve a reasonable
solution it may be necessary to go beyond the strict notion of
maximizing individual expectations and employ ancillary as-
sumptions that temper the attitude and behavior of the decision
makers

Satisficing negotiation, however, permits controlled de-
grees of altruism. If agents are willing to lower their standards,
as defined by the boldness, b, they may obtain a satisficing com-
promise, where a joint decision is obtained that is good enough
for the group as a whole and good enough for each member of
the group. This potential result is guaranteed by the following
theorem.

Theorem 1 (The negotiation theorem.) If u; is individually
satisficing for the ith agent, that is, u; € X}, then it must be the
ith element of some jointly satisficing vector u € Xy,

Proof We will establish the contrapositive, namely, that if u;
is not the ith element of any u € X, then u; ¢ Xi. With-
out loss of generality, let i = 1. By hypothesis, pg(u1,v) <
bpr(ui,v) for all v. € Uy x --- x Un, s0 ps, (u1)
Zlvps(ul,v) < b)Y, pr(u1,v) = bpg,(u1), hence uy
;.

Ow I

The content of the negotiation theorem is that, under intrin-
sic satisficing, no one is ever completely frozen out of a deal—
every decision maker has, from its own perspective, a seat at the

negotiating table. This is perhaps the weakest condition under
which negotiations are possible.

A decision maker possessing a modest degree of altruism
would be willing to undergo some degree of self-sacrifice in the
interest of others. Such a decision maker may be viewed as an
enlightened liberal; that is, one who is intent upon pursuing
its own self interest but gives some deference to the interests of
the group in general. Such a decision maker would be willing to
lower its standards, at least somewhat and in a controlled way,
if doing so would be of great benefit to others or to the group in
general.

The natural way for a decision maker to express a lower-
ing of its standards is to decrease its boldness. Nominally, we
may set b;, the boldness of the ith agent, to unity, which reflects
equal weighting of the desire for success and the desire to con-
serve resources. By decreasing b;, the agent lowers its standard
for success relative to resource consumption, and thereby in-
creases the size of its satisficing set. As b; — 0 the standard is
lowered to nothing, and eventually every option is satisficing.
Consequently, if all decision makers are willing to reduce their
standards sufficiently, a compromise can be achieved.

Figure 3 illustrates this negotiatory process. The amount
by which b; must be reduced below unity is a measure of the
degree of compromising needed to reach a mutually acceptable
solution. As with tension and diversity, however, this degree
of compromising is not a measure of performance, but it is a
useful figure of merit for assessing the degree of difficulty that
is associated with the negotiatory process.

Step 1: Agentiforms £} andX} ,:=1,...,N;initial-
ize with b; =1,b = min{bl, . ,bN}.

Step 2: Agent i forms its compromise set by eliminating
all option vectors for which its component is not
individually satisficing, resultingin C; = {u ¢
3w € 5, )

Step 3: Broadcast C; and b; to all other participants, re-
ceiving similar information from them.

Step 4: Form the satisficing imputation set, N =
ML, Cj. If N = @, then decrement b;, j =
1,..., N, and repeat previous steps until N # §.

Step 5: Agent i implements the ith component of the ra-
tional compromise

u” = arg max Psy sy(u) .
ueN pr, Ry(u)

Figure 3: The Enlightened Liberals negotiation algorithm.

This leads to a theory of social behavior than is very differ-
ent from standard /V-person von Neumann-Morgenstern game
theory. Whereas, under conventional theory, additional crite-
ria may be required to foster successful negotiations, the sat-
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isficing concept builds controlled degrees of compromise into
the decision-making procedure. If an agent reaches its limit
of compromise before negotiations are successful, it may be
forced to declare an impasse, rather than to sacrifice its stan-
dards any further.

5. RESOURCE SHARING

The following simple example illustrates the fundamental dif-
ferences between substantive and intrinsic rationality. Suppose
a factory operates IV processing stations that function indepen-
dently of each other, except that, if their power requirements
exceed a fixed threshold, they must draw auxiliary power from
a common source. Unfortunately, there are only N — 1 taps to
this auxiliary source, so one of the stations must operate with-
out that extra benefit. Although each station is interested in its
individual welfare, it is also interested in the overall welfare of
the factory and is not opposed to making a reasonable compro-
mise in the interest of overall corporate success.

Let U denote the set of auxiliary power levels that are fea-
sible for each X to tap, and let f;: U — [0, 00) be an objective
function for X;; that is, the larger f;, the more effectively X;
achieves its goal. X;’s choice is tempered, however, by the
total cost of power, as governed by an anti-objective function,
gi: U — [0, 00), such that the smaller g;, the less the cost. Work
cannot begin until all players agree on a way to apportion the
auxiliary power. Table 1 displays these quantities for a situation
involving three decision makers.

U H| o fo| 92 f3 | 93
001050 |10 (010 [ 1.0 || 025 | 1.0
1.0 || 2.00 | 2.0 || 2.00 | 3.0 || 0.50 | 5.0
2.0 | 3.00 | 40 || 3.00 | 6.0 || 1.00 | 5.0
3.0 1| 4.00 |50 | 4.00|9.0 || 2.00 |50

Table 1: The objective functions for the Resource Sharing
game.

A standard approach under substantive rationality is to
view this as a cooperative game. The payoffs may be obtained
by combining the two objective functions, yielding individual
payoff functions of, say, the form

( ) = -1 ifu; >0Vj
TilUL U2 U3) = o fi(ug) — Bigs(ug)  otherwise

i = 1,2, 3, where o, §3;, and p are chosen to ensure compatible
units. To achieve this compatibility, we normalize f; and g; to

unity by setting a; = m and 3; = —m

The Pareto solution is up = {0, 1,3}, but, with an attitude
governed by expected utility maximization, X ; has noincentive
to agree to this apportionment. Thus, to solve this problem, a
negotiation protocol must be invoked. Of the various protocols

that are possible, the only one that does not require assumptions

additional to that of self-interested expectations maximization
is the core. Unfortunately, the core is empty for this game. Es-
sentially, this is because only two decision makers can share
in the auxiliary power source, effectively disenfranchising the
third decision maker. This situation potentially leads to an un-
ending round of recontracting, where participants continually
make offers and counter offers in a fruitless attempt for all to
maximize their expectations.

Let us now view the decision makers in their true charac-
ter as enlightened liberals who are willing to accept solutions
that are serviceably good enough for both the group and the in-
dividuals. From the point of view of the group, an option is
satisficing the joint selectability exceeds the joint rejectability
scaled by boldness. We define joint rejectability as the normal-
ized product of the individual costs functions, namely,

DRy Ry Rs (U1, U2, u3) < g1(u1)g2(u2)gs(us),

where “oc” means the function has been normalized to sum to
unity. To compute the joint selectability, we note that, under
the constraints of the problem, only two of the agents may use
the auxiliary power source. We may express this constraint by
defining the joint selectability function as

ifuell
otherwise

3, (U u Uu
p515253(u1,u2,u3)0<{ gsl( 1)Ps, (u2)ps, (us)

where II is the set of all triples u = {u;,u2,u3} such that
exactly one of the entries is zero. The individual rejectability
and selectability marginal mass functions are obtained by sum-
ming over these joint mass functions according to the rules of
probability theory.

The enlightened liberals algorithm yields, for b >
0.8, an empty satisficing imputation set. But, when b is
decremented to 0.8, the satisficing imputation set is N =
{{0,1,3},{0,2,3},{0,3,3}} and the rational compromise is
u* = {0, 1,3} which, coincidentally, is the Pareto optimal so-
lution. It is not surprising that, at unity boldness, there are no
options that are simultaneously jointly and individually satisfic-
ing for all participants, since there is a conflict of interest (recall
that the core is empty). But, if each individual adopts the point
of view offered by intrinsic rationality, it gradually lowers its
personal standards to a point where it is willing to be content
with reduced benefit, provided its costs are reduced commen-
surately, in the interest of the group achieving a collective goal.
The amount b must be reduced to reach a jointly satisficing so-
lution is an indication of the difficulty experienced by the par-
ticipants as they attempt to resolve their conflicts. Reducing
boldness is a gradual mechanism for decision makers to subor-
dinate individual interest to group interest. This mechanism is
very natural in the regime of making acceptable tradeoffs, but is
quite foreign to the concept of maximizing expectations (“you
get what you pay for” versus “nothing but the best”).

The diversity and tension values for this decision problem
are given in Table 2. We interpret these values as follows.
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Agent || Diversity | Tension
X1 0.55 0.93
Xy 0.03 1.30
X3 1.21 0.73

Group 2.85 0.51

Table 2: Diversity and Tension for Resource Sharing Game.

Group diversity is high and group tension is low, indicating
that, as a group, the system is fairly well suited for its envi-
ronment, and that the system is powerful enough to make good
decisions. Individually, X2 has the lowest diversity and the
highest tension. This situation is reflected in the structure of N,
where we see that X has several choices that are good enough,
but is either dubious or ambivalent about all of them. Thus, X 5
experiences the most conflict in making decisions. X3 is quite
content with its decision and so is X ;. The fact that X is not
conflicted as measured by diversity and tenseness may appear
somewhat contradictory, since it is X; who ends up sacrificing
for the benefit of the group. But these figures of merit are not
intended to be metrics of performance, only of the intellectual
power of the decision maker, in terms of its conflict between
selectability and rejectability.

6. CONCLUSION

An intelligent agent is, first and foremost, a decision maker,
regardless of the problem context, the way knowledge is rep-
resented, or the criteria used to define performance. One way
to assess the functionality of the agent is to provide it with a
means to evaluate introspectively its own fitness, or suitability,
to function in its environment. Satisficing decision theory pro-
vides this capability. Although the figures of merit associated
with these fitness evaluations are not measures of performance,
they are useful measures of the innate intellectual (decision-
making) power of the agent.
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Abstract

Probably the most widespread and significant existing
“performance metric for intelligent systems” is the dollar pre-
miums that employers are willing to pay to recruit and retain
more intelligent human employees compared to less intelli-
gent ones. This paper examines some of the aspects driving
this economic metric in the search for analogies that may be
useful in establishing performance metrics for constructed
intelligent systems. Aspects considered include Language
Understanding & Capacity to Act, Goal-Directedness, Auton-
omy and Unpredictability, Information, Uncertainty, World
Models, and Self-Models and Self Awareness. The paper
concludes with a discussion of performance metrics for
human intelligence and a brief prospectus for the role of eco-
nomic considerations in assessing the Vector of Intelligence

Keywords: economic value, intelligence

1. Introduction

Much of the discussion leading up to the conference on
“Performance Metrics for Intelligent Systems” focuses on an
“inner” view of intelligent performance, or rather of intelli-
gence itself. This inner view takes two very different forms:
components like memory or MIPS that must be present inside
an intelligent system, and metaphysical questions about the
“inner life” of an intelligent system, such as questions of
consciousness.

Rather than try directly to add to this interesting and
valuable train of thought, this paper approaches the subject of
performance metrics for intelligent systems from an external
perspective. The question under consideration hers is “What
is the economic value of intelligence?” Most of the discus-
sion will concern the market value of human intelligence, in
order to look for useful analogies for understanding and
measuring the economic value of intelligence in constructed
systems.

Individuals treasure intelligence in themselves and their
friends and family for a variety of reasons, most of which lead
rapidly into the spiritual or metaphysical realm, or, if you
prefer, into the most complex challenges of sociobiology.
Either way, creating a “performance metric” for intelligence
in this context seems neither feasible nor especially desirable.

On the other hand, consider the owners of a medium-
sized business, who need to hire a number of employees to
perform various tasks in the firm. Why should the owners
pay a higher salary and go through a more difficult and
expensive recruitment process to hire a more intelligent
employee when they can get a less intelligent employee with
the same training and experience more cheaply? To the
extent we can give a quantitative answer to this question, the
dollar premium a business is willing to pay for intelligence is
a financial “performance metric for intelligent employees”
within the context of the job at hand. Understanding how
these dollar premiums arise in a variety of employment situa-
tions can give important clues on how to put a value or “met-
ric” on the performance of intelligent machines.

There are three distinguishable ways in which a smarter
employee can be worth more money to a business than a stu-
pid one with equivalent training and experience. These are:
doing what I say, doing what I want, and doing what I need.

2. Language Understanding & Capacity to
Act

At the most fundamental level, “do what I say,” an intel-
ligent laborer can follow instructions better than a stupid
laborer. Smart employees can follow instructions that are
more complex, less detailed, and require less time and effort
(in other words, less money) to prepare. Since they are less
apt to misunderstand instructions, they require less money to
be spent on supervising them than is the case for less intelli-
gent employees with equal motivation. For constructed sys-
tems, the equivalent is an expressive command language; one
that is the “natural language” for describing the task at hand,
whether it resembles a spoken human language, a specialized
technical language, or a graphical interface. Allied with this,
of course, is the capacity to actually carry out the instructions,
which some have referred to as the “body” as opposed to the
“mind” of the intelligent constructed system.

3. Goal-Directedness

It is possible to view the next level, "do what I want," as
simply an elaboration of the ability of smarter employees to
follow instructions that are less detailed. However, busi-
nesses look hard for intelligent skilled craftsmen who can be
told what goals to accomplish without needing to be told how
to do so, and reward them with higher wages and better
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treatment. A major topic of discussion has been the role of
goal - directedness in intelligent systems. In the world of
human employment, a laborer (first level) is given instruc-
tions about how to do a job; the goal may be implicit in the
instructions but is not an integral part of them from the
laborer's point of view. A craftsman (second level), on the
other hand, takes the goals provided by the employer and car-
ries them out without further instruction. To do this, the
craftsman needs experience and training, but also puts more
intelligence into the work than the laborer does. '

Over time, a job may become more routinized, so that
what originally required highly intelligent goal-seeking
behavior later requires only the following of rote instructions.
This can occur at either the structural level as the instructions
are written down for others, or within an individual as long
experience with a job eventually allows it to be done “without
thinking.” The equivalent to this process in the area of con-
structed systems would be the replacement of complex, “intel-
ligent” processes of sophisticated search and behavior
generation with stereotyped program modules or hardware
gadgets, reducing the “intelligence” used by a constructed
system while maintaining or even enhancing its performance.

4. Autonomy and Unpredictability

At both of the first two levels, management wants behav-
ior of the employee to be predictable. Intelligence means
autonomy in the sense that, given equivalent training and
motivation, the intelligent employee does what is expected of
him or her without close supervision while the stupider
employee in the same job needs to be watched all the time.
However, autonomy in this context is almost the opposite of
creativity, spontaneity, or unpredictability; it is the stupid
employee, not the smart one, who comes up with the most
surprises.

It is only at the highest level, “do what I need,” that
businesses value unpredictability in their employees and con-
sultants. Even here, there are two degrees of unpredictability.
Most of the time a person or company seeks advice on matters
of law, engineering, medicine, or other fields, the advice has
no “information” value if the one requesting it already knew
the answer; nevertheless, routine advice needs to be in line
with professional standards. For example, though I do not
want to be able to predict what my personal physician is
going to tell me, [ want it to be essentially the same as what
any competent physician would say given the same knowl-
edge about me; in other words, I want my physician's behav-
ior to be essentially predictable by other physicians. It is only

if I am suffering from an extremely serious disease, or if I am
knowingly participating in a clinical experiment, that I want
my physician to do something that will surprise the medical
profession!

5. Information

Some of the discussion about performance metrics for
intelligent systems has debated the applicability of entropy or
other aspects of information theory to measuring intelligence.
Fundamentally, “Information” implies informing somebody
about something they didn’t already know. From this point
of view, an employer wants a laborer’s work to provide no
new information output at all, but a more intelligent laborer
requires less information input that an unintelligent one. A
craftsman working at the second level of “doing what I want”
takes compact information about goals rather than lengthy
information about procedures; the craftsman’s work in sense
generates “information” to the employer about the methods
used, but this is information that normally is of no great
interest to the employer. It is only at the highest level, that of
the professional employee, that the employer is concerned
about receiving information output from the employee.

Information |Information
Input Output
Laborer |Do what I say [High, procedural |Ideally none
Crafts- [Do what I want |Low, Uninteresting
man goal-oriented
Profes- |Do what I need |Various Essential
sional

6. Uncertainty

The more uncertain the job environment is, the more
valuable an intelligent employee becomes. Procedural
instructions about an uncertain job environment must become
a complex collection of “ifs” and branches, compared to a
more linear set of instructions for a job in a less uncertain
environment. Businesses have to pay more for employees
intelligent enough to follow such complex instructions than
they do for employees whose jobs do not contain much
uncertainty.

For sufficiently high levels of uncertainty in the job envi-
ronment, management finds it unprofitable to prepare proce-
dural instructions in a form that even the smartest laborer can
follow. Instead, it is more economical to hire craftsmen who
only need to be told the employer’s goals and essentially left
to implement those goals according to their own skills and

' Note that my focus here is on the degree of intelligence demanded by the job, not on the intelligence possessed by the human
being doing it. Job demands place only a lower bound on the worker's intelligence. Nevertheless, the more intelligence the job
demands, the more the performance of an intelligent employee will overshadow that of a less intelligent one.
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intelligence. The fundamental problem with the “Chinese
Room” thought experiment is that, while it might in principle
be possible to prepare and index a set of stimulus-response
instructions so extensive as to allow the occupant of the room
to carry on a conversation in Chinese without any knowledge
of the language, it is in fact such an immense task that it
would be far cheaper and easier to build a machine that actu-
ally understood Chinese (and easier still to hire a human who
understands Chinese to sit in the room!).

At the highest levels of uncertainty (or extreme complex-
ity, which as Zadeh points out has many of the same effects)
management can no longer be sure what goals are feasible or
profitable, and so seeks expensive and potentially surprising
guidance from professionals, and perhaps some day from con-
structed systems that produce “useful surprises” at a profes-
sional level.

7. World Models

It is very rare for an employer to ask about an employee’s
internal model of the world or to pay a higher salary on
account of it. Laborers are paid to follow instructions intelli-
gently in the real world, and craftsmen are paid to ply their
trades intelligently in the real world. Whether or not they use
an internal model of the world to do so is of no economic
importance except as it is reflected, at one or more removes,
in their performance.

Professionals are paid to give “useful surprises” to their
employers or clients. This information (and actions informed
by it) generally have to do with the real world, though at
times professionals may be asked for opinions about hypo-
thetical situations. Even then, usually it is irrelevant whether
the answer comes from stored knowledge, experimentation,
or the exercise of a simulation-like model in the professional
expert’s head. The exception is when the professional is
explicitly asked to provide a model, but in that case the model
is no longer an internal one, but an external analogy, flow-
chart, or computer simulation.

8. Self-Models and Self Awareness

Certainly, all of a firm’s (human) employees have a self-
model, a self-awareness, a consciousness. But only in a few
“helping professions” such as psychiatry or the clergy is an
abov-average endowment in this area considered an advan-
tage to job performance. Employers value some limited facets
related to self-awareness such as taking pride in one’s work
and being safety-conscious, but outstanding self-
consciousness and self-absorption are not considered signs of
outstandingly valuable intelligence by employers. Thus, with
regard to constructed systems, it might be an economically
important goal to build machines that “care” about doing a
good job and know how to take care of themselves and those
around them. But we should not insist on a robotic Mother

Teresa; it would be a magnificent achievement to create a
working system that was as caring and careful as a seeing-eye
dog.

9. Performance Metrics

Unlike constructed systems, human employees cannot be
opened up to inspect their components. Thus, employers in
search of intelligent employees rely on a variety of bench-
mark tasks. Occasionally, they may use a benchmark task
that tries to screen out the effects of knowledge to focus on
pure intelligence -- examples include IQ tests and program-
mer aptitude tests. However, since job performance is more
important than what mix of knowledge, intelligence, and
other endowments it arises from, most benchmark tasks
measure performance without much concern about the mix.
The most common benchmark task is performance on similar
jobs in the past.

Another interesting benchmark is formal education.
Completing any program of study implies an ensemble of
intelligence, knowledge, and skills for learning, writing, and
simply sticking to a task. The education most valued by
employers adds to this a body of knowledge relevant to the
job. However, for complex and unpredictable environments,
it may not be possible to specify in advance what body of
knowledge will be required. In such a case, a broad “general
education” demonstrates that a person has an advanced abil-
ity, refined by varied practice, to learn whatever is required in
a new situation. With respect to constructed systems, a
design team that hones and demonstrates their product’s abil-
ity to learn and excel in a wide variety of problem environ-
ments, including artificial ones as well as real ones, can
command a higher price for their machines than a design
team that only trains their system on what is “relevant” to its
expected tasks, at least from customers whose jobs are at the
high end of uncertainty or complexity.

Performance metrics for intelligent systems based on
board games like chess and backgammon or parlour games
like the Turing test can be very useful in addressing philo-
sophical questions about what it means to be intelligent, and
technological questions about how to implement it, but they
are of little direct economic interest. In particular, to pass the
Turing test in a job application context, an intelligent system
would have to refrain from showing any levels of ability not
common among humans, and also to demand the same levels
of salary and benefits as a human. What is needed, instead, is
a set of benchmark tasks, probably job-specific, with one or
more of the following characteristics:

* Instructions are so complicated that it is
more profitable to seek an intelligent
laborer system that understands them, than
to seek an unintelligent “Chinese room”
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type system to follow the instructions with-
out understanding.

The environment is so complicated and
uncertain that it is more profitable to seek
an intelligent craftsman system that accepts
exogenous goals and carries them out
according to its own skills and intelligence,
rather than to seek an unintelligent system
that simply follows instructions.

then the one with the best cost/benefit ratio, not necessarily
the smartest one, will be chosen.

10.Economics and the Vector of

Intelligence

The “white paper” for the 2000 Conference on Perform-
ance Metrics for Intelligent Systems lists 25 potential coordi-
nates for a possible Vector of Intelligence. A major challenge
is to find ways to systematically quantify or otherwise specify

the values of these “coordinates.” Without detracting from
the usefulness of methods oriented toward philosophy of
mind, toward control engineering, or toward academic com-
puter science, let me propose an economic approach to meas-
uring each of the 25 coordinates summarized in the following
table. In this economic approach, the challenge would be to
estimate the derivatives of system cost/benefit ratio in a
benchmark problem to “memory temporal depth,” “number of
objects that can be stored,” ... et cetera. The second deriva-
tive is as important as the first since most or all of these coor-
dinates are subject to diminishing or even negative returns.

*  The situation is so fuzzy that it is more
profitable to seek an intelligent professional
system to determine what goals are appro-
priate (presumably given exogenous meta-
goals) and do surprising things for the
benefit of the organization, rather than to
seek an unintelligent system that simply
and predictably carries out exogenous goals

To be useful, an intelligent constructed system must pro-
vide a better cost/benefit ratio than any combination of
human being(s) and unintelligent constructed system(s). If
more than one intelligent constructed system meets this test,

Twenty-Five Potential Coordinates for the Vector of Intelligence (from the White Paper)

(a) memory temporal depth

(b) number of objects that can be stored

(c) number of levels of granularity in the system of representation

(d) the vicinity of associative links taken in account during reasoning of a situation, or

(e) the density of associative links

(f) the vicinity of the object in which the linkages are assigned and stored (associative depth)

(g) the diameter of associations ball (circle)

(h) the ability to assign the optimum depth of associations

(i) the horizon of planning at each level of resolution

(j) the horizon of extrapolation at a level of resolution

(k) the response time

(1) the size of the spatial scope of attention

(m) the depth of details taken in account during the processes of recognition at a single level of resolution

(n) the number of levels of resolution that should be taken into account during the processes of recognition

(o) the ratio between the scales of adjacent and consecutive levels of resolution

(p) the size of the scope in the most rough scale
and the minimum distinguishable unit in the most accurate (high resolution) scale

(9) an ability of problem solving intelligence to adjust its multi-scale organization to the hereditary
hierarchy of the system,

(r) dimensionality of the problem (the number of variables to be taken in account)

(s) accuracy of the variables

(t) coherence of the representation constructed upon these variables

(u) limit on the quantity of texts available for the problem solver for extracting description of the system 20

(v) frequency of sampling and the dimensionality of the vector of sampling

(w) cost-functions (cost-functionals)

(x) constraints upon all parameters

(v) cost-function of solving the problem
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Abstract. In this paper we develop a computational framework for the measurement of
different factors or abilities usually found in intelligent behaviours For this, we first develop
a scale for measuring the complexity of an instance of a problem, depending on the descrip-
tional complexity (Levin LT variant) of the ‘explanation’ of the answer to the problem. We
centre on the establishment of either deductive and inductive abilities, and we show that their
evaluation settings are special cases of the general framework Some classical dependencies
between them are shown and a way to separate these dependencies is developed Finally,
some variants of the previous factors and other possible ones to be taken into account are
discussed. In the end, the application of these measurements for the evaluation of Al progress
is discussed

1 Introduction

Are Al systems of today more intelligent than those of 40 years ago? Probably the answer is a clear
yes, at least for some of the current systems. However, another different question is ‘How much
more intelligent?’, and, even more, in which aspects are they more intelligent?

In this paper we investigate a framework for the evaluation of such a progress in different
factors, extending in a natural way the work endeavoured in [12] and [11], specific for only some
inductive factors. For such an extension, the main aim should be to develop the less number of
factors as possible, by proposing general factors instead of specific ones. Moreover, the framework
would allow to studying their theoretical correlations, and reducing, when possible, a factor to
another. This leads finally to a group of tests that can be adapted and implemented for measuring
different abilities of Al systems.

First of all, we must ascertain three problems for any evaluation of the ability of solving a
problem: to give a general scale of a complexity of the problem, to settle the unquestionability of
the solution to the problem and to establish a way to know whether the subject has arrived to the
solution.

Computational complexity scales problems according to the time different kinds of machines
require to solve them in the general case by using the optimal algorithm possible. However, most
problems of interest in AT are NP-complete. But, remarkably, some instances of NP-complete prob-
lems are easier than instances of polynomial problems. This assertion seems to be contradictory,
since any instance has an algorithm to solve that instance in linear or even constant time (the
program “if the input is  print the solution y”), so there is apparently no reason for stating that
an instance can be easier than another. This has been shown to be false up to an extent, because
for some problems it is better (shorter) to give a more general solution than the specific solution
for an instance of the problem. This has been formalised under the notion of “instance complexity”
(see e.g. [16]), which gives the shortest solution to an instance of a problem provided it does not
give a contradictory solution for other instances of the same problem.

However, instance complexity is only of interest for large instances of a considerable descrip-
tional complexity (or for sets of instances). Moreover, the difficulty of the problem is not usually
related to the descriptional complexity of the solution. For instance, the descriptional complexity
of the answers given by a theorem prover (an accepter) are very short, namely one bit to say

72



‘yes’ or ‘no’. In the same way, the hardness of a prediction problem cannot be measured by the
descriptional complexity of the element predicted, but rather by the complexity of the reason why
the element has been predicted. The idea is then to measure the descriptional complexity of the
‘justification’ or ‘explanation’ of the solution. Consequently, any cognitive skill can be measured
within this framework provided that problem and solution can be formalised computationally.
The paper is organised as follows. After Section 2, where some notation is introduced, Section 3
gives a general formula of the hardness of the instance of a problem, by clarifying how to generalise
the concept of ‘explanation’ of a solution to a problem. Section 4 addresses the issue of specialising it
for deductive abilities and discusses their measurement. Section 5 does the same thing for inductive
abilities, but recognising that it is necessary to solve the unquestionability problem. Section 6 deals
with their dependencies and the possibility of taking other factors into account. Section 7 discusses
the applications of these measurements, especially for the evaluation of automated reasoning and
machine learning systems. Section 8 closes the paper with the results and open problems.

2 Preliminaries

Let us choose any finite alphabet X' composed of symbols (if not specified, ¥ = {0,1}). A string
or object is any element from Y*, with o being the composition operator, usually omitted. By
(a,b) we denote a standard recursive bijective encoding of a and b, such that there is a one-to-one
correspondence between {a, b) and each pair (a,b). Note that this usually takes more bits than aob.
The empty string is denoted by e. The term [(z) denotes the length or size of z in bits and logn
will always denote the binary logarithm of n.

The complexity of an object can be measured in many ways, one of them being its degree
of randomness [14], which turns out to be equal to the shortest description of it. Descriptional
Complexity, Algorithmic Complexity or Kolmogorov Complexity was independently introduced by
Solomonoff, Kolmogorov and Chaitin to formalise this idea, and it has been gradually recognised
as a key issue in statistics, computer science, Al and cognitive science [16][6].

The Kolmogorov Complexity of an object, defined as the shortest description for it, usually
denoted by C (plain complexity) or K (prefix-free complexity) turns out to be not computable in
general, due to the halting problem. One solution for this is to incorporate time in the definition
of Kolmogorov Complexity. The most appropriate way to weight space and time execution of a
program, the formula LT3(p,) = l(p) + log 73(p.), where 7 is the number of steps the machine 3
has taken until z is printed by p,, was introduced by Levin in the seventies (see e.g. [15]). Intuitively,
every algorithm must invest some effort either in time or demanding/essaying new information,
in a relation which approximates the function LT. The corresponding complexity, denoted by Kt
(see e.g. [16]) is a very practical alternative to K.

3 Problem Complexity by Its Explanation Complexity

Consider a problem instance 7 as a tuple (S, C, I, A, #) where S is the context or working system
where the problem can be established, C' is a Boolean function which represents a (syntactical)
validity criterion, I is the presentation of the instance, A; is the answer and ¢ is a (semantical)
verifier!. The general problem is denoted by 7(-) as the tuple (S, C, ¢).

We say that F is an explanation for the problem instance 7 iff F is valid, i.e. C((S, I, E')) = true,
and F is a means to obtain the solution, i.e., ¢((S, I, E)) = A;.

From here, it is easy to adapt the definition of Kt to measure the hardness of a problem.
Namely, the hardness of a problem instance (S, C, I, A, #) is then defined as:

H(r) =min{LT(E|({S,C,I)) : Eis an explanation for 7} (1)

! Both C and ¢ could be joined in one function. We have preferred to separate them, because later it will
be useful to distinguish between both parts of a correct solution, in order to establish purer factors
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For instance, the hardness of a search problem is usually estimated by the size of the search
space. If the search problem is complex, it is necessary to say which branches have been selected in
order to arrive to the solution, or either a long time is necessary to explore (and make backtracking)
to the misleading ones. It is the function LT which finds a compromise between the information
which is needed to guide the search and the logarithm of the time that is also needed to essay all
the branches. On the other hand, if the search problem is linear (one possible branch), it is very
easier to describe the problem (just follow the rules in the only possible way). However, for very
long derivations, the inclusion of time can make hardness high too.

For the evaluation of a subject’s ability of solving a kind of problem 7(-) it is necessary to
generate a set of instances of that problem of different hardness. In order to scale the instances
more properly, we introduce the concept of k-solvability. An instance of a problem 7 = (S, C, I, A, ¢)
is k-solvable iff k is the least positive integer number such that:

H(r) < k-logl(I) (2)

The use of log(I) is justified by the fact that, once the general problem is known, each instance
must be ‘read’ an this takes at least {(]) steps.

Once given a general scale of a complexity of the problem, it is then easy to make a test
from the previous definition, provided that the unquestionability of the solution to the problem
is clear. Unquestionability can only be addressed depending on the kind of problem (we will see
this for deductive abilities and especially for inductive abilities in the following sections). Finally,
there is no way to know whether the subject has arrived to the solution if the explanation is not
given (and usually the explanation is difficult to check or the subject may not be able to express
the explanation in a comprehensible form). For instance, the subject may have given the right
solution but maybe due to wrong derivations. Fortunately, in the case of multiple solutions, this
situation will be discardable in the global reckoning of the test. In the case of few solutions, such as
‘yes’/‘no’, it is then necessary to penalise the errors by using some formula that takes into account
the possibility of guessing the right answer ‘by error’.

Another question is the time limit for making the test. This would highly depend on the factor
to be measured, and whether there is a special interest on evaluating the ability to solve a given
problem or the ability to solve it quickly. The selection of the time limit and the evaluation of the
score according to it could be very interesting for evaluating resource-bounded rational systems.

Finally, we have not considered the possibility of multiple correct explanations for the same
solution, which would suggest a modification of (1). Consider the situation of the best explanation
with LT = n, but several other explanations of LT = n+1. Intuitively, the existence of these other
explanations also affects the easiness of the solution. However, this is very difficult to evaluate
in practice because there are always infinite slight variations of the best explanation (void steps,
redundancies, etc.), so the previous situation is extremely frequent (if not inevitable). It is then
assumed that for every k:

card{ E: LT(E) = kand C({S,I,E)) = trueand ¢((S, I, E)) = 4; } <<
card{ E:LT(E)=kand C({(S,I,E)) = true } (3)

In other words, we assume that the proportion of valid and correct explanations wrt. valid

explanations is very small.
Once a general framework is established, let us study which deductive and inductive abilities
are feasible and interesting to be measured within it.

4 Deductive Abilities

Apparently, deductive abilities are much easier to measure, because there is no possible subjectivity
in the correct answer; given the premises and the way to operate with them, only one answer is
possible.
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An instance of a deductive problem m = (S, C, I, A, #) can be defined in terms of the previous
framework in the following way: S corresponds to the set of axioms or axiomatic system, C is a
Boolean function which says what is a valid application of the axioms, I is the instance of the
deductive problem, A; the answer and ¢ is a verifier, i.e., ¢((S, I, E)) = A;, in this case, a verifier
that checks whether A; is a result of applying a solution to I in S.

In this case the explanation E is represented by a proof in S stating that A; is a the result of
I or, in other words, a derivation from I to A;.

Example: Consider for instance an accepter that tells whether a proposition is a theorem or not. Let
S be the axioms of arithmetic. Let C' a function that tells that a derivation is valid according to the rules
of application of the axioms, and let I be the instance “Is Fermat’s famous conjecture true?” (recently a
theorem) Which is the hardness of the solution A = ‘yes’? The descriptional complexity of A (which is
just yes) would say that the instance is very easy, however its hardness given by H turns out to be the LT
of the proof with less LT Consider instead the instance “solve 2+3” which, also with a low complexity of
A = 5, turns out to be simple, because the derivation is describable easily and shortly from (S, C, I). In
general, any calculation is shortly describable, so its hardness will depend solely on its temporal cost

According to this example, we can distinguish some classical deductive problems that can be
measured. In particular, the following factors are distinguished:

— Calculus Ability: in this special case, C' only allows a specific and deterministic application of
the rules or axioms of S. In this case the search space is linear. As it has been said before, its
complexity is exclusively given by the logarithm of the time which is needed from the input
I to the output A;. This ability is not of much interest to be measured nowadays, since it is
better done by computers than humans, and it would finally measure the computational power
of the subject / machine.

— Derivational Ability: in this case, C' only allows a varied application of the rules or axioms
of S. Consequently, the search space is open. The complexity is then given by a compromise
between the logarithm of the time which is needed to know that a branch leads to no solution,
and some information that may say which branches to take (and which ones not to take).

— Accepter Ability (proving ability): It is a special case of the previous ability, with the special
feature that I can only be ‘yes’ or ‘no’. Theoretically, there is no reason for expecting that a
subject has a different result in this problem that in the previous one.

The way to implement a concrete test for the previous ability is not complicated. For calculus
ability, it is just necessary to generate some derivations. Their length will determine the time
which is needed to follow them. On the contrary, for the other two abilities, it is necessary to
generate a possible derivation, and look that there are no shorter equivalent derivations. This,
in general, will be extremely costly, growing exponentially according to the value of k-solvability.
Fortunately, there is no need for efficiency here. A hard test can be generated during days, even
weeks, and then passed to several subjects.

5 Inductive Abilities

A sequential inductive problem m = (S,C,I, A, ¢) can also be defined in terms of the previous
framework in the following way: S corresponds to the background knowledge, I is a sequential
evidence (with {(I) = n), C is a Boolean function which represents the hypothesis selection criterion
(e.g. simplicity), A; is the prediction of the (n + 1)th element of the sequence and ¢ is a verifier,
ie., #({S,I,E)) = A;, in this case, a verifier that checks whether A; is the (n + 1)th element given
by the hypothesis with the background knowledge S and also checks whether both cover I.

In this case the explanation E is represented by a ‘hypothesis’ wrt. S that affirms that A4; is
‘what follows’ I or, in other words, a prediction from I.

Example: Consider for instance a prediction problem Let S be a background knowledge, containing,
among other things, the order of the Latin alphabet. Let C' a function that tells that a hypothesis is
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good according to a selection criterion, and let I the instance “aaabbbcccdddeeefffgggh” Which is the
hardness of the solution A; = ‘h’? The descriptional complexity (in LT terms) of the hypothesis is again
what is taken into account

The main question of evaluation of induction is that of inquestionability. Even if the selection
criterion is given, two plausible explanations may differ slightly, and the selection criterion would
give that one is slightly better than the other, but this would depend highly on the descriptional
mechanism used. In [12] and [11] this difficult problem is addressed, according to a comprehensive
criterion, a variant of the simplicity criterion based on Kolmogorov Complexity in the style of
Solomonoff [19], but ensuring that the data is covered comprehensively, i.e. without exceptions.
Accordingly, the simplest explanatory description, denoted by SED(z|y), is defined in [11] as the
simplest (in LT terms) description which is comprehensive wrt. the data z given the background
knowledge y. To ensure unquestionability, the examples are selected such that there are no al-
ternative descriptions of similar complexity that give a different description. Finally, there is a
small possibility that a good prediction is given by a ‘wrong’ explanation. This probability may be
neglected in the tests or corrected by a penalising factor in the score of wrong results.

From here, partially independent factors can be measured by using extensions of the previous
framework. For instance, inductive abilities, such as sequential prediction ability, knowledge ap-
plicability, contextualisation and knowledge construction ability can be measured in the following
way:

— Sequential Prediction Ability: several unquestionable sequences of different k-solvability are
generated. A test for this ability has been generated in [12] and passed to humans, jointly with
a typical psychometrical test of intelligence. The correlation showed that this is one of the
fundamental factors of intelligence, although more experimentation is to be done.

- Inductive Knowledge Applicability (or ‘crystallized intelligence’): a background knowledge B
and a set of unquestionable (with or without B, denoted by H(z;|B) and H(x;) respectively)
sequences z; are provided such that H(z;|B) = H(x;) — u but still SED(z;|B) = SED(z;).
The difference of performance between cases with B and without B is recorded. This test would
actually measure the application of the background knowledge depending on two parameters:
the complexity of B and the usefulness of B, measured by u.

— Inductive Contextualisation: it is measured similarly as knowledge applicability but supplying
different contexts By, By, ..., By with different sequences z; ; such that H(z;¢|B;) = H(z;:)—u.
This multiplicity of background knowledge (a new parameter T') distinguishes this factor from
the previous one.

— Inductive Knowledge Construction (or learning from precedents): a set of sequences z; is pro-
vided such that there exists a common knowledge or context B and a constant w such that for
H(z;|B) < H(x;) — u. A significant increase of performance must take place between the first
sequence and the later sequences. The parameters are the same as the first case, the complexity
of B and the constant w.

It is obvious that these four factors should correlate, especially with the first one, which constitutes
a necessary condition for having a minimal score in the other factors.

6 Dependencies and Other Factors

Although there is a common (but argueable) view of induction and deduction as inverse processes,
they are not inverse in the way they use computational resources. In fact, any inductive process
requires deduction to check the hypotheses, thus, obviously, inductive ability is influenced by
deductive ability. This has been usually recognised by IQ tests, where deductive and inductive
abilities usually correlate. Due to this fact, inductive factors usually are the main part of intelligence
tests, because deductive abilities are implicitly evaluated.

However, if we are looking for ‘pure’ factors the question is whether there is a way to separate
this deductive ‘contamination’ in inductive factors.
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The idea is to provide ‘external’ deductive abilities when measuring inductive factors, in order
to ‘discount’ the deductive effort than otherwise should be done. For this, given a problem m =
(S, C, ¢) it is only necessary to provide an ‘oracle’ which computes ¢ in constant time. The subject
must only guess models (hypotheses) and check them in the oracle, by providing the hypothesis
to it and comparing the results with the evidence I. This would measure the ‘creative’ part of
induction. In the following, let us denote by ‘purely’ inductive the corresponding factors to those
highlighted in the previous section which result from providing the oracle.

This resembles a ‘trial and error’ problem considering reality acting as the oracle. The issue is
how to implement this in a feasible way, especially for evaluating complex agents or even human
beings. The best way, in our opinion, is the construction of a ‘virtual’ world where the subject to
be evaluated can interact and essay its hypotheses with no effort.

In a similar way as the oracle for ¢, some difference could be estimated if the syntactical machine
C is (also) given. Although this would not be much representative for deduction, for induction it
would discount the ability of working with the selection criterion, which is an important trait of
induction.

Nonetheless, deductive ability is also influenced by inductive ability as long as the problems
become harder. Some lemmata or rules can be generated by an intelligent subject in order to
help to shorten the proof from the premises to the conclusion. This may explain why artificial
problem solvers without inductive abilities have not been able to solve complex problems, and
this is especially clear in Automatic Theorem Proving. Consequently, recent systems are beginning
to use ML techniques for improving performance. Background knowledge could also be examined
in deduction, provided S includes the axioms but also some useful properties. This finally gives
similar factors as those given for induction:

— Deductive Knowledge Applicability: how lemmata or properties are used for a deductive prob-
lem.

— Deductive Contextualisation: the ability of using different contexts for different problems.

— Deductive Knowledge Construction: this will measure the increase of performance between first
instances and last ones.

Finally, we have given a measurement for sequential induction, and it seems interesting to evaluate
non-sequential induction as well, where an unordered set of elements is given as evidence from
an unknown function that maps whether an element belongs to a set. In this case, the test could
give some possible values which might be members of the set, although only one of them is really
in it. Solomonoff formalised deterministic (sequential) prediction [19] and recently, has formalised
non-sequential prediction [21]. This problem is similar to the inductive problem of learning a
Boolean classifier and can be extended to the case of a general classifier. To eliminate the deductive
contamination of the measurement of non-sequential induction, the ‘oracle’ ¢ should be a classifier,
telling, given a hypothesis, to which class the element belongs. The essay of an ‘oracle’ that accepts
several elements at a time should be considered as well.

Once the basic deductive and inductive factors have been recognised, the question is whether
there are many other factors which are relevant to be measured. For instance, memory or ‘memo-
isation ability’ is a factor that is knowledge-independent and it can be easily measured. However,
this factor is not very interesting for AI nowadays.

Other factors, such as analogical and abductive abilities can be shown to be closely connected
to inductive and deductive abilities both theoretically and experimentally. A first approach for
measuring them has been attempted in [12], and the test applied to human beings has shown the
correlation with inductive abilities.

However, not every factor is meaningful. Factors like “playing chess well” are much too specific
to be robust to the subject’s background knowledge. However, it cannot be discarded that some
game-playing factor would measure competitivity and interactivity abilities aside from deductive
and inductive abilities.
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Finally, we have considered individual tests which measure one factor. For measuring several
factors at a time, the exercises should be given one by one and, after each guess, the subject should
be given the correct answer (rewards and penalties can be used instead). This has two advantages:
there is no need for the subject to understand natural language (or any language) to order to be
explained the purpose of the test, and there is no need to tell which factor or purpose is to be
measured in each part of the test. There is also one disadvantage, deductive problems should be
posed in terms of ‘learn to solve’, and this may devirtualise them.

7 Applications

Modern Al systems are much more functional than systems from the sixties or the seventies. They
solve problems in an automated way that before required human intervention. However, these
complex problems are solved because a methodical solution is found by the system’s designers,
not because most current systems are more intelligent than preceding ones. Fortunately, the initial
aim of being more general is still represented by some subfields of AI: automated reasoning and
machine learning.

Automated reasoning (more properly called Automatic Theorem Proving) is addressing more
complex problems by the use of inductive techniques, while maintaing their general deductive tech-
niques. These systems, in fact, have been used as the ‘rational core’ of many systems: knowledge-
based systems, expert systems, deductive databases, ... But, remarkably, the evaluation of the
growth of automated reasoning has not been established from the success of these applications
but from the increasingly better results on libraries of problems, such as the TPTP library [22].
However, there is no theoretical measurement about the complexity of the problems which compose
these libraries. Instead, some approximations, such as the number of clauses, use of some lemmatas,
etc., have been used. Following the approach presented in this paper it would be interesting to give
a value of k — solvability of each of the instances of these libraries.

In a similar way, machine learning has recently taken a more experimental character and systems
are evaluated wrt. sets of problems. Except from general problems (classes), where their complexity
(or learnability) has been established, there is no formal framework for giving a scale for concrete
instances.

In this new and beneficial interest in measurement, Bien et al. [1] have defined a ‘Machine In-
telligence Quotient’ (MIQ), or, more precisely, two MIQs, from ontological and phenomenological
(comparative) views. Any comparison needs a reference, and the only reference of intelligence is,
for the moment, the human being. This makes the approach very anthropocentric, like the Tur-
ing Test. The ontological approach, however, is not based on computational principles but on a
series of characteristics of intelligence that are defined on linguistical terms rather than computa-
tional/mathematical ones, such as long-term learning, adaptation, recognition, optimization, etc.
Moreover, the evaluation is generally measured on performance on some specific problem, contrary
to the claim that “it is time to begin to distinguish between general, intelligent programs and
the special performance systems” [18]. Although this can be very appropriate for specific systems
where functionality is clear, in general this would not allow for the comparison of intelligence skills
of different systems devised for quite different goals. How to define general and absolute character-
istics of intelligence computationally is more difficult and new problems present themselves, but
the progress in the ‘intelligence’ of AI systems can only be measured in this way.

8 Conclusions and Future Work

Among the problems for making these measurement reliable there is the selection of a reference
machine. The evaluation of abilities with instances is dangerous because it depends on constants.
Since there is no apparent preference for any descriptional mechanism, we plan to adapt these
notions for logic programming, because it is a paradigm that has been used both for automated
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deduction and machine learning (ILP) as well as other uses (abduction, theory revision, ...), and,
in our opinion, is not biased.

For the moment, the framework which has been presented allow for the measurement of dif-
ferent factors and clarifies the distinction between evolutionary-acquired knowledge, life-acquired-
knowledge and ‘liquid intelligence’ (or individual adaptability). Several tests for different subfields
of AT could be devised following this paradigm, and the increasing scores for solving more and
more complex (k-solvable) problems may be a way to know how much intelligent AI systems are
wrt. previous generations systems.
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ABSTRACT

With development of system complexity and performan-
ces, it is important to evaluate its ability to perform
tasks, especially in the case of opposing outer effects.
This amounts to affect ”intelligence” coefficient to the
system, which basically requires to transfer usual geo-
metric space calculations to more global and qualitative
task space, the only one where this coefficient can have
a meaning irrespective of system structure. The pro-
blem is discussed here by defining the useful information
by its analytical expression explicit in terms of system
elements. By application to the class of deformable La-
grangian systems, adapted controlled structure is con-
structed. Intelligence measured by minimization of a di-
stance between demand and result mainly appears as
a compromise between information ball and robustness
ball reduction for fixed system complexity.

Keywords . System complexity, Functional Asym-
ptotic Control, Useful Information and Entropy, Intel-
ligence, Task Space Control.

1-INTRODUCTION

As technical systems required for real life task accom-
plishment are becoming very complex both in their (hard
ware) physical realization and in the related (software)
organization of their command-control structure, an em-
erging question is in the possible existence of a limit in
improving these systems. Supposing everything can be
continuously extended on hardware side, a direct conse-
quence on soft side is the research of a quantitative way
to scale system capability, ie in short to measure their
“intelligence”[1]. One should first make sure that the
question has a well defined meaning as for human the de-
finition of intelligence is multiform and depends on the
emphasized ”qualities” in the tests. Also, a difficulty
is the domain on which this "intelligence” is applied,
as there exists different kinds of human ”intelligence”
ranging from high abstraction to very applied domains.
To avoid these problems the angle of approach will be
modified and, as a system is generally designed for ac-

complishing a prescribed set of tasks, its ”intelligence”
compared to another system will be evaluated in terms
of its "efficiency” to collect the relevant information for
these tasks and to use it in its accomplishment. A com-
panion question is system adaptation to different or even
adverse working conditions, which also amounts to eva-
luate the size of robustness ball corresponding to the
selected tasks. A difficulty however rcappears with the
word ”sclected” as concerns ”who” is chosing the tasks,
and this stresses the huge difference between dedicated
and self-deciding system structures. In first case, ”intel-
ligence” measurement is limited to evaluation of simple
faithfullness in design and organization, and to robust-
ness to parameter change, whereas in second one, a new
dimension in system evaluation capability is added, sho-
wing that the problem cannot be handled in an universal
and unique framework.

Another strong restriction is coming from hardware. Ex-
ample of lightweight robot arms[2] shows that for high
enough power there cxists a breakpoint where internal
material structure generates excitation of internal de-
formation modes impairing initially rescarched perfor-
mances. One may speculate that this could be cured by
adequate controller design using vision system, most ad-
apted to detect working environment and to give morc
flexibility to adapt to task change. As mounting vision
sensor on robot arm is no longer possible with defor-
mations, exterior more rigid fixture should be used. If
environment is then correctly observed, robot arm vi-
brations still remain, forbidding fast enough approach to
target. So including robot end effector in visual obser-
vation may appear as a natural solution, but the reality
is that this is not possible as actuator frequency range is
significantly smaller than typical perturbation frequency
range. Active control robustification, a constant trend in
control research over the last decades, becomes inefficient
beyond some today crossed limit because of the inavoi-
dable spillover from low frequency actuator range to high
frequency internal system range which severely limits the
performances. This internal contradiction (more con-
trolled active power for nominally better performance
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leading to secondary internal phenomena downgrading
more this performance) also makes the ”intelligence” as-
sessment somewhat questionnable in the present context,
and bounds ecven more the domain where the problem has
a well defined meaning. Interpretation is that usefulness
of collected information from sensors is strongly system
depending, including human opcrator, raising the pro-
blem of its adequate selection for a given system and a
prescribed task.

Escaping from these difficulties is however possible by
observing that this limitation comes from unability of
computation-control system to rcconstitute, as it classi-
cally does, actuator command from trajectory observa-
tion for its efficient control. Two different elements are
implied in this statement. One is the impossibility past
some level of complexity to distinguish between two close
enough trajectories. Even with perfect end effector loca-
tion in time and space, decomposition of this observation
on base represcntation functions becomes unrecalizable
when flexion and torsion effects arc mixing up in a very
complicated motion. Control action becomes inefficient
if one-to-one relation between control and trajectory is
no longer maintained. Even if it were maintained, the
power would have to be delivered, owing to speed and
torque requirements, in a too high frequency range for
present actuators, and this would be technically non rea-
lizable. The second element is also of fundamental nature
in that there i1s no direct action on deformation modcs
from actuators, as they are recciving their power input
from rigid motion mode, leading to a mismatch between
internal natural power cascade and external one imposed
by feedback loop with usually spillover effect impairing
again system performance.

As there is inadequation between basic physics under-
standing and new bifurcated situation, classical point of
view should be changed. With trajectory non distin-
guishability the base ingredient for trajectory control, ic
its time dependence in usual state space represcentation,
should be abandonned. Only trajectories as a whole have
now a meaning, and global cnough information is rele-
vant. Reducing the complete non controllable system
dynamics to smaller initially driving rigid ones, time de-
pendent system trajectory is embedded into a selected
class by application of fixed point theorem. The resul-
ting control, explicitely expressed in terms of global sy-
stem quantitics, still gives asymptotic stability toward
desired trajectory, and exhibits the interesting property
to be at its level naturally organized toward task orien-
tation. So in progressing toward higher quality perfor-
mances with higher designed and more complex systems,
use of better components is not sufficient and control
structure has also to fit with system properties, implying
mainly application of subsidiarity principle guarantecing

minimization of internal information flux. This resto-
res adjustment of system hardwarc structure to possible
task assignment, as it gives again the system the way to
have appropriate internal information exchange compa-
tible with power flux. Resulting internal coherence thus
appears as an extremely important element in the possi-
bility of measuring system ”intelligence”.

To illustrate the previous concepts developed at system
level, useful information is defined in next paragraph and
task oriented control for general Lagrangian system dy-
namical equations is considered. Application to actuated
onc-link robot arm with flexion and torsion deformations
carrying of-center massive object is discussed with Euler-
Bernouilli approximation. When compared to usual con-
trol based on vision system which in present case cannot
insure trajectory stability, "local” deformation effects are
internally taken care of by proposed control. As much
lower information flux circulation is implied, vision sy-
stem is freed for higher level task of driving the approach
to desired target, and for much more modest computing
requirement. In this sense, actual system may appcar as
more "intelligent”.

2-SYSTEM REPRESENTATION AND
USEFUL INFORMATION

For global system improvement, system parts have them-
selves to be improved in their various components. Basi-
cally three hardware parts always cxist in a system, 1)-
a mechanical-physical part, 2)- a sensor-computing part,
and 3)- a power-actuation part, see Fig.l. There also
exists a fourth software control law part, which should
enable the system to correctly perform in targetted range
within its new physical conditions, manifested by the
crcation of a (possibly infinite) number of internal mo-
des, thus increasing its number of degrees of freedom, and
making previous classical controls inadapted. The con-
trol based on the new physical conditions theoretically
exists[2] and still makes system trajectories asymptoti-
cally stable, ie it guarantces again tracking performance
requirements.

Due to larger excited frequency band when mode num-
ber increascs, the problem now rests upon 1)- sensing
and trcating this new added information, and 2)- gene-
rating the corresponding power inputs as needed for in-
creasing system performances. The first point belongs
to sensor-computing part, and is handled within exi-
sting technology covering a large frequency band with
a wide set of technical solutions and corresponding to
broad range of accuracy. For the second point, despite
the large size domain ([10™1m, 101m]) without going into
more specific microsystems, there still exists a frequency
gap between classical actuators low frequency domain
([0,30Hz]), and high frequency domain corrcsponding
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to “smart” material systems ([3.102H z,3.103H 2]). Any
new information is directly usable only if it belongs to
the intersection of both sensors and actuators frequency
ranges. A very striking case is vision scnsor giving an
over-detailed amount of informations not directly useful
for system control improvement. Conscquently to give
the system adapted capability, the problem is not in get-
ting more information as believable from the increase
of system internal degrees of frecdom, but on the con-
trary to reduce the extra-information from state space
in frequency range outside actuator’s one, and in order
to maintain robust asymptotic stabilization by adapted
control within the uncertainty ball corresponding to the
unprecisencss produced by this reduction. As shown on
Fig.1, it is after collection of rough information from sen-
sors that therc should exist a reduction process to filter
the only relevant information needed for reaching system
targets. This leads to the definition of useful information
determined from task orientation rather than lower level
unexploitable trajectory orientation. It is based on ob-
scrvation that occurrence of events rests upon removal of
a double uncertainty : the usual quantitative onc related
to occurence probability and the qualitative one related
to event utility for goal accomplishment. So events may
have same probability but very diffcrent utility, and this
explains why some extra informations on top of existing
ones have no impact on reaching the goal. In present
case, it can be verificd that, calling u; and p; the utility
and the probability of event £}, and I(u;, p;) its associa-
ted information called useful information, the relation

I(”aplp?):I(uap1)+j(u;p2) (1)

holds for cvent Fy U Ey with same utility u. On the other
hand, there is strict proportionality betwecen utility and
corresponding information, so

I(Au,p) = M(u, p) (2)

With eqns(1,2), there results that useful information is
given by
I(u, p) = —ku.logp 3)

where k is Boltzmann constant. Usual entropy calcu-
lation is thus obtained by presupposing that all cvents
have same utility for goal accomplishment, which is cer-
tainly true in Thermodynamics where all molecules are
totally intcrchangeable and thus indistinguishable. As
a consequence it is well known that only the invariant
corresponding to this equivalence class, here the energy
(or the temperature), allows to separate thermodynami-
cal systems. Similarly internal system deformations (fle-
xion and torsion) are undistinguishable events as they
arc layered on invariant surfaces determined by the va-
luc of bending moment M at link’s origin[3]. So using

their observation to improve system dynamical control
is not possible, in the same way as obscrving individual
molecule motion in a gas does not improve its global
control. As a result, raw sensor information has to be
filtered so that only useful information for desired goal
is selected. This is precisely the remarkable capability
of living systems to have evolved their internal structurc
so that this property is harmoniously embedded at each
level of organisation corresponding to each level of deve-
lopment. In this scnse they are remarkably intelligent.
An important element here is that the process has been
subsidiased into the hardware structure in order to free
the upper levels.

3-LAGRANGIAN EQUATIONS FOR
DEFORMABLE SYSTEM

To proceed, advantage will be taken of the general la-
grangian form of deformable system in order to exhi-
bit directly on system equations the features discussed
above concerning information reduction. First there is
a cascade cffect of exterior forces onto rigid dynamics
feeding itself deformation modes, allowing reduction of
complete initial (infinite dimensional) system to (finite
dimensional) ”core” rigid system, sec Fig.2. Then, and
as long as "natural” boundary conditions are conside-
red for the system, only thesc intrinsic elements will be
really needed to control system dynamics. By “natu-
ral” are meant boundary conditions constructed with the
remaining terms coming from the various integrations by
part needed to transform system action variation into
Lagrange cquations. More specifically, with Lagrangian
density

B o dg;(t) Oug(z,t) 0™ ug(x,t)
'CT —ﬁT <q] (t)) dt ,Uk(fl’,t), 8t 8$n7’ )
. Our(S1,t) 0™ ug(S1,t)
uk(bl)t)’ at ) a‘/ll‘"l ,x’t

(4)
depending on both discrete (rigid) variables ¢;(¢) and
field (deformation) variables u; (z, ) up to their pth spacc
derivatives, as well as their values on a part (S;) of total
system boundaries (S = S; x S2) of the space domain
D(z) in the additive form

_ 1 g
'CT - ‘/’(‘l‘) LR (q]a dt ;t) + ED (5)

of a rigid variable part Ly and a deformable one £p, and
where the arguments in the second part are the same as
in eqn(1l). The variation of the action

ty
7= / Lrdzdt (6)
to D(zx)
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inside the space domain D(z) and over the time interval
[to,tf] can finally be splitted into two parts, one under
the integral sign and another one expressed at the boun-
dary (S) of D(z) and at the limits of the time interval (if
there are ”transversality conditions”), and resulting from
integrations by part. Writting that system equations are
deduced from the action Z by a variational principle im-
plies two clements :

- 1 - the Lagrange equations

(9f,CT daf,CT_ _
8q,» dt 6(1] =hi+ U
oLy, OLr oLy d oLy
B % T, T T wen =00

arc satisfied inside the space-time domain, with U; the
control acting onto the system,

- 2 - the remaining boundary terms resulting from inte-
gration by parts arc equated to the work done by exterior
force terms onto the system, ie.

DﬁT V,CT _
(TLM. [E;-F] +V (S) ]1) .6U5j —0

oLy J VLrp
v — —|— b =0
(n [011;“, S; u(S ) ) s
with

(8)

VLr/VZ=0Lp/Z(S;) — d/di[0Lr)0Z(S;)]

DLr/Du, = 0Ly /0, — 8,0L7 ) du

and transversality conditions if any are satisfied. Boun-
dary conditions are called "natural” when they are con-
structed from these quantitics, and not from different
ones.

For a l-link system, the lagrangian writes in partitioned
form

EZLT(q](t)aQJ)_" /L:d(q]’q]1‘1('rvt)aqaq;nq,uu) (9)

+ ICS(Qja‘jj;QS:‘jSaQuS;‘iuS)

with rigid part

o> Ao, \° . )
L =17, (dt) +J’”(dt) + Kpn(0—6,)°  (10)

in terms of rigid articular and actuator variables ¢; = 6,
g2 = 0, deformation part

2 , 2
Lo =pA ( do N (?u(t,a:)) K (87(t,:c)>

dt ot ot

+E1<%>2+Gt}<¥>z (11)

in terms of flexion and torsion variables u(t,z), v(¢, z),
and interaction part

do 02u(t,9:))2
z=L

[
Ks —5771,)& + J; (dt + Ry
(12)
()
z z=L
do 0u(t z) 0?u(t, z) 87(75 z)
X=(L+ ) Oz ! bzt +h oz |,_p

at links boundaries, out of which dynamical equations
and boundary conditions are casily obtained[4]. ({f,{;)
are coordinates of tip mass m with respect to link’s end,
and the various other coefficients characterize the beam
as usual within Euler-Bernouilli approximation. One can
verify that in link and actuator equations coupled by
compliance effect, are both acting the applied input tor-
que 7 and the bending moment M, = EI(6%u(t,0)/0x?),
here the only term through which deformations are seen
by system rigid part.

4-TASK ORIENTED CONTROL

In general, the system is assigned to perform an action,
and a control is set to give the system the ability to meet
the corresponding requirements. This is always expres-
scd as satisfaction of Lyapounov theorem with adapted
Lyapounov function, writen in terms of system trajectory
parameters in state space. In other words, control is tra-
jectory oriented, and all sensors arc used in this view. In
particular, vision scnsor if any will provide information
on link tip motion. As seen above, this is misleading
as long as observed motion belongs to an indistiguisha-
ble class. Control has to be approached in task oriented
scnse, and, for reaching the goal, is governed by a choice
of ”good” informations depending of their utility decfi-
ned above. Starting from partial Hamiltonian density
associated to deformable part

. oL
+itu(S) %(’;) ~Lp
(13)

0Lp 8L’

oL
b = by 5o i) g

au(S)

Hp

onc will consider system Lyapounov function

.2 §?
J

with positive parameter gains Kp;,'v;. Its time deri-

vative along system trajectories is
OLgr
Ui+ F; —
w=olsen- (G

+ Kpjq; +FVji1'j]

d 8LR)
dt dq;
(15)
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Substituting for d?q; /dt? from explicited Lagrange equa-
tions(7) and eliminating all other second order time de-
rivatives, one will get an “inertia” term Fy; which, on
physical grounds, is cqual to forces other than exterior
forces Fj acting onto system of discrete variables ¢;, and
coming from the (back) effect of the field variables u(xz,t)
onto discrete variables ¢;(¢). As V is positive definite for
large enough definite positive gains (K pj,I'v;), its deri-
vative can be made definite negative by taking control U;
so that the term between brackets is equal to —(Kv ¢);,
where matrix Ky- is definite positive. The resulting form
of the control (supposing there is no exterior force)

Uj =—-Kpjq; — Kvg; + Kp(g;,45,---) + Kpj Fa (16)

and gencralizes usual PD-control to full nonlinecar case.
In fact, it fits more generally the expression of dynamical
system control

U= Ucomp + TJ_PDF + AU (17)

when writing the tracking condition for desired trajec-
tory ¢;(t) = ¢;a(t) and splitting the various control com-
ponents, with

— . 1
Uppr =Upp + Kr [OJFa (18)

Morcover, from argument above, the control law in cqn
(16) gives both asymptotic tracking of desired trajectory
for discrete variables and asymptotic stability for field
variables as well as their first order time derivatives.
From eqn(15), ecquating the sum between brackets in its
right hand side to —(Ky¢); amounts to take a control-
ler of PDA type[5]. However, it should be observed that
the resulting invariant subset of dV/dt is the same as
when I'; = 0. So the same convergence property of the
solutions is expectable for any value of I';. The reason
of introducing the new kinctic term with I'; # 0 is in
the role of the direct acceleration term, or of the new
resulting term Fg; after substitution, which is mainly to
change the relative values of inertia-damping-stiffness sy-
stem paramcters with respect to ficld modes, as alrcady
observed and used for classical force control.

But after substitution from Lagrange equations this term
is an integral of a complicated function of field variables
and their space derivatives over the domain D(z). So
there is no advantage to use it in this form which requires
local knowledge of ficld variables inside the domain, un-
less Lagrangian structure is such that this integral trans-
forms into explicit well identified and sometimes directly
measurable surface quantitics. A very simple case occur
when the Lagrangian Lp is such that formally

oCp ddLp _9Cp d ILlp

dg;  dt 0g;  Ou  dt du (19)

Then from Lagrange cqns(7) there results

(o gowy_, foer 0
0(1]' dt 0q] T 8“;4 Vauuu S

The ”inertia” force term Fyo is just equal to the boun-
dary term in the first bracket of eqn(8) when I'; = 0,
and is expressible in terms of this quantity, and of rigid
variables ¢; and their first time derivatives when I'; > 0.
This global expression contains all needed information to
control the local action of (infinite dimensional) defor-
mation effects, usually approached by decomposing this
source term onto all projection space and cutting at a
finite mode number with spillover consequences([6,7].
Much more than local control, more global task oriented
control will also be independent of (too) detailed infor-
mation on link deformations. Typical task is to reach
a preassigned target under specific circumstances. Re-
turning to cqn(3), this amounts to minimize the total
entropy production associated to any motion in the class
of acceptable trajectories fixed by the local control de-
fined in previous paragraph, so its expression depcnds
in general of all trajectory paramecters. To this end, the
utility « will be taken as the gradient of a convenient
positive definite quantity such as a Lyapounov function
to define a steepest path and more importantly, to elimi-
nate before data processing irrelevant task information,
saving enormous amount of time and data space. So with
(p) the set of all observed parameters one gets

oy

= 5; (20)

u

and in eqn(3) only will remain terms for which this ex-
pression is above a minimum threshold value correspon-
ding to system sensitivity. So all collected information
from sensors is filtered in terms of its utility for the pre-
scribed task. This explicit result is independent of the
dedicated or selfdeciding character of the system. With
eqn(14) for instance, the only dependence of V on trajec-
tory parameters is through bending moment M| so when
taking the gradient with all sensor information, there
only remains a term 9V/OM, and more detailed trajec-
tory information does not appear. So adapted control
splits finally into a local one expressed in terms of global
(relative) invariants A, and a nonlocal one depending
on utility of these quantities for rcaching final target.
Though trajectory oriented the first one directly links to
the task oriented second one and respects the very nature
of internal information provided by system structure. In
this respect, system intelligence is easily measured by in-
formation flux from eqn(3) and by associated robustness
ball of the applied control corresponding to a distance
between demand and result.



5-CONCLUSION

Analysis of system structure shows that evaluation of its
intelligence is only meaningful in task space. This re-
quircs the satisfaction of internal coherence conditions
manifcsted by system ability to extract from its sensors
the relevant information for these tasks. The problem
is studied here by defining the useful information which
preciscly allow to pass from initial geometrical space to
task space irrelevant of the way the system is designed
and organized. Application is made for Lagrangian sy-
stems representing deformable bodies, for which equati-
ons analysis shows that even if at first sight system na-
ture is drastically changing with increase of state space
dimension to infinity, internal system organization also
changes in such a way that its local control still remains
fundamentally finite dimensional. Observation of new
deformation modes is not only useless, but also dama-
ging in that it leads to control form interfering with na-
tural internal feedback regulating power exchange bet-
ween displacement and deformation. Sensors providing
too detailed information are not adapted as it has to
be filtered for reconstitution of needed more global one.
More efficient way is to use local control based on na-
tural system invariants, directly linkable to more global
task oriented control based on useful information (rat-
her than filtered one) expressed in terms of utility fac-
tors constructed as the gradient of Lyapounov with re-

appear, justifying again the choice of previous local con-
trol form. Moreover, the association of the two level form
presented here respects natural system organization and
minimizes information transfer between the two levels.
System intelligence is directly measured by task adapta-
tion expressed here as both circulating information flux
and robustncss ball corresponding to local controller for
a given distance between demand and result.
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Abstract

This paper tries to stress the need of having a clear understanding of the
concept of intelligence before we can progress in the formulation of a
measure for it. At the end it suggests a view of intelligence as structural
feedback in model-based control systems.
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1 INTRODUCTION

This paper tries to suggest the practical impossibility of finding
a single and useful' measure of general intelligence for all types
of artificial systems performances unless we get some previous
result in the form of a sound theory of intelligence.

As was stated at the workshop website, its goal is to discuss
three challenges pertaining to intelligent system performance:

e how to measure performance;
e how to evaluate intelligence and

e how to put performance and intelligence into correspon-
dence.

We will try to address the three points in order (see sections
4,5 and 6), but first we want to make a first comment. When
talking about intelligence a problem appears, and it is that intel-
ligence” is a moving target. Some centuries ago “a person able
to read” implied “a person very intelligent”. Now we don’t con-
sider this ability as a symptom of intelligence in a person of our
environment. But if we talk about an animal, forsone example
a dog, “able to read” is still considered a good manifestation of
intelligence.

So, what is that stuff that appears or disappears as you point at
different entities? Can intelligence be in the eye of the beholder?
We think that the term is used in two quite different ways: a)
As a comparison between two entities that can be both explicit
or one implicit (a normal dog) and b) As an absolute measure of
some core capability.

While we can mostly agree with Alex Meystel conception of
intelligence as a core concept underlying minds, perhaps all we

'From an engineering point of view, i e to build/analyze artificial systems

are falling in the easy way of thinking mentioned by Bateson
[3, page 82] of using words that appear more concrete than they
are®.

Before entering into main matter, let’s start with a brief dis-
cussion about the adequacy of ascribing mental properties like
intelligence to machines.

2 WHAT IS INTELLIGENCE?

It is common to address intelligence as a property inherent to
something we call mind. The use of both terms, intelligence
and mind, is not that clear. In fact, each one of us appears to
have his own notion of intelligence speaking in terms of everyday
life. Although deep thought and study about the topic can clarify
partial notions of intelligence, there is still no global perspective.

We want the following question to emerge: does intelligence
really exist? After what has been said and having in mind our
constant references to the concept, it really seems ridiculous to
question it. But we would like to point out the fact that intel-
ligence could well be one word hiding what can be considered
a too fuzzy concept 3. By this we mean that the word does not
have a fixed reference to something that can be pointed out, such
as a dog or a table (it lacks a true referent). It is in some sense a
concept similar to a notion of a mathematical space, i.e.: every-
thing which matches certain restrictions is part of intelligence.
The space of things that think.

The concept has lost in this way the apparent rigidity; the
question, although, may be, in a more precise way: what are
the restrictions a feature has to match to form part of intelli-
gence? And at this point the answers diverge because the num-
ber of possibilities is close to infinity.* It would be an error to
put the question like this. Perhaps it would be better to approach
the topic in another way: what is behind everything we seem to
consider intelligent? Searching this instead of a particular set
of characteristics would eventually lead to a rule with which the
judgement of the existance of intelligence would be possible.

In any case, once it is clear if something is intelligent or not,
it would be tempting to determine how intelligent, that is, how
much intelligence it has. This question is too particular to be

2Bateson says about these words that they are too short and this shortness
conveys an erroneous ascription of concreteness.

3A linguistic variable in its most pure sense: i e. created by language.

“4This is to be thought in a sense of too broad for understanding
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answered. The individual intelligent characteristics which con-
stitute the intelligent set of features one self possesses are each
specialised, and in this way not comparable.’ In this way, given a
set of intelligent characteristics, the only judgement that has any
sense needs to be put in terms of targets and adequation to those
targets: performance.

Returning to the rule which would enable discrimination be-
tween intelligent and not intelligent, it should not be focused on
common aspects of features we usually consider intelligent, but
on requirements which make them possible. For example paral-
lel calculation, memory, etc. Having this in mind, the decision to
consider something intelligent or not comes from the process of
analysis of the underlying capability, i.e.: learning what can be
expected from a being with such capability (eg. memory) when
in a particular environment and with a more or less elaborate set
of targets. Apparently we end again with a certain notion of per-
formance.

The last point we would like to focus on comes from looking
at the problem from a different angle. What if intelligence were
a concept only suitable -clear enough- for human minds? That
is, we call something intelligence, but it does not seem to have a
bounded notion behind. So, supposing it is a collection of fea-
tures we have grouped together, and not considering the fact that
we could have done so in other ways, what makes us think that
intelligence is something (a table, a bus)? In other words, what
makes us think an alien would have a notion parallel to our in-
telligence as he would if he came to Earth and saw a table or a
boat?

3 HUMAN (SPECIES) CHAUVINISM

Let’s see what philosophers think about mental properties of ma-
chines. An example is what Crockett [5, p.193] says about the
use of human-like phrases to refer to machine thinking:

Our anthropomorphizing proclivity is to reify those ab-
stractions and suppose that the computer program pos-
sesses something approximating the range of proper-
ties that we associate with similar abstractions in hu-
man minds.

Even more amazing is his continuation:

This is harmless so long as we remember that such
characterizations can lead to considerable philosophic
misunderstanding.

What amazes me more in this text is that people like Crocket
strongly believe that we know what are the “abstractions in hu-
man minds” but only suppose what the computer program pos-
sess. In our experience we know -most of the time- what are the
abstractions -the representations- in mechanical minds but only
suppose what are those abstractions in biological minds.

STt would be like comparing -adding, subtracting, etc - apples and dogs: im-
possible

It is these days is when we are starting to get some direct in-
sight into the inner working of human minds by means of PET
(positron emission tomography) or fMR (functional magnetic
ressonance [4]). As an example, fMR has confirmed what many
had long suspected —that men and women think differently. Yale
Medical School investigators did compare the brain operation of
men and women while reading, discovering different activation
patterns in their brains while performing the reading task.

Another example of the difficulties in matching human mental
concepts with machine mental concepts can be found in [2]:

Indeed, if mechanical devices can distinguish wave-
lengths of light without having sensations, then why
do I experience any sensation at all?.

Most people tend to think that the human sensation is some-
thing more than the mere recognition of a input signal. Recog-
nition at the simple level of signal capture, representation and
triggering of activity. ”Sensation” is nothing more than the trig-
gering of activity due to an input signal. The immediate imple-
mentation in a computer is as an interrupt handler. The only
difference is the high level of concurrence in biological comput-
ers that let them be truly concurrent in responses to sensations.
There are also human sensations that are so strong that they dis-
able further sensations. This is, exactly, the type of behavior
found when a computer interrupt handler disables further inter-
ruptions.

Computers provide minds for physical systems, and it is time
to clarify the true meaning of mental concepts.

4 PERFORMANCE AND MIPS IN BRAINS

A visible feature of biological intelligence is performance as Jim
Albus pointed in his definition of intelligence. This is related
to how we use the term for humans (remember the title of the
book by Sternberg and Wagner, Practical Intelligence: Nature
and Origins of Competence in the Everyday World).

In our search for metrics for intelligence, we are exactly in the
same situation as computer consumers and manufacturers were
some decades ago in relation with client-requested performance
measures. As they both discovered, the old-basic measure of per-
formance (MIPS: Million Instruction per Second) was useless to
compare different architectures (e.g. CISC vs. RISC) or applica-
tions (e.g. data-bases vs. finite-element analysis). The only use-
ful possibility they found was the evaluation of the performance
in specific tasks, and hence this was the origin of benchmark-
ing. Unfortunately benchmarks are not single measures, and at-
tempts to build weighted benchmarks only changed the focus of
the benchmark but not the final usability of them (they are always
measures of niches of functionality).

Task-independent measures, like MIPS or bits/second or en-
tropy, are too raw to be useful for most engineering purposes
because they are so far from the desired performance specifica-
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tion that we lack a theory that can map one into another®. For
example, suppose that we want a distillation column controller
intelligent enough to minimize recirculation (a desired perfor-
mance). Who can decide, based on a MIPS-like measure, if a
fuzzy controller A can fulfill the task, or if model-based predic-
tive controller B is better that A?.

This theory that maps a MIPS-like measure to performance
specified in useful terms is what we are seeking in our research
on intelligent systems, because it is —in fact— The True Theory of
Intelligence. The theory will not only let us evaluate alternative
designs, it will be a true explanatory discourse that will reduce
intelligence to simpler, well grounded, terms.

To follow Bateson suggestion of marking concepts that are
not concrete enough and require further thinking, we can use
the term i-stuff to refer to the substance measured by True In-
telligence Metrics. George Saridis probably will equate i-stuff
to negentropy and Jim Albus to performance. We will make a
suggestion at the end of the paper.

5 INTELLIGENCE AND BODILY CAPABILITIES

In relation with what can we measure, we agree with Chris Lan-
dauer in the fact that ”Success is not by itself the right crite-
rion” because we have to split success into two contributions:
mind and body (and bodily intelligence is not what we are talk-
ing about). As an example consider two implementations of a
future Mars rover whose main mission is going from point A to
point B, one kilometer away, taking a sample of the ground each
50 meters:

Implementation H: 200 Ton. Caterpillar structure based on a
combination of bulldozer, power shovel and truck. Control
of sample taking based on mechanical coupling of power
shovel to caterpillar (50 meters = sample). It lacks direc-
tional control because it is not necessary (it will advance
straight bulldozering any obstacle.)

Implementation T: 50 Kilograms. 10 Watt solar power panel.
Microrobotic arm.

Who will attain success? If both are successful, who is more
intelligent? Is performance a manifestation of intelligence? The
two first questions are rhetoric. The answer for the last one is
“not always”.

There are some attempts to extend fundamental physical the-
ory to include information at the same level as mass and energy.
In some sense we can analyze biological behavior as an exchange
of mass (feeding in / excreting out), energy (chemical in / ther-
mal & mechanical out) or information (sensing in / speech out).
We can attach these interchanges to human subsystems, and in-
formation will become associated to the mental system. This
division is, however, not very strict, because information is sup-
ported by means of mass or energy, and some energy inputs are
managed as mass inputs (specially in animals).

OThis is, in fact, the third point mentioned in the introduction

6 CONCLUSIONS

Our analysis of the Mars rover story is that if the T implementa-
tion is successful everybody will agree that it is more intelligent
than the H implementation. Even if both attain success. TO
achieve this result the T implementation needs some mental con-
tent and some algorithms to exploit this mental content.

As we did say before we will propose a different interpretation
of i-stuff: it is focused on mental models. Following this idea,
an intelligent being is a being that has models of his world in
his mind and achieves intelligent behavior using its models for
action. Intelligence is, from this perspective, a two sided con-
cept: model-based mental content (static view of intelligence)
and model-based generation of behavior (dynamic view of intel-
ligence).

Can the i-stuff be that collection models? Not so. Because all
we know some knowledgeable people that are plain stupid.

What we consider the true core of intelligence is -plainly-
feedback. When feedback for action is done trough good mod-
els of the world it achieves incredible performance levels. When
feedback is used to tune parameter models it make systems adapt
to changing circumstances in the world. When feedback is used
to modify models of the world this is a pure learning process.
When feedback is used to structurally modify the algorithms ex-
ploiting the models we are talking of creativity’. Structural feed-
back is perhaps the highest manifestation of intelligence; when a
system is able to create new control policies that will enhance its
effectiveness.

Perhaps this proposal only muddles more the discussion be-
cause model is even shorter than intelligence and it seems even
more concrete; but we think that it is relatively easier to devise
metrics for model quality.

But even if we can measure quality of models and model evo-
lution algorithms, we are still halfway to the metric of intelligent
behavior, because we still lack a quality measure of the use of
the model to generate the behavior (i.e. a metric of the archi-
tecture). Performance-based metrics, as suggested by Jim Albus
definition of intelligence, will fit this niche but still they will be
domain-dependent.

We strongly believe that, in the future, all these theories of
intelligence will consolidate in a Great Unification Theory (and
this structural feedback seems to us a good promising starting
point), that will let engineers build artificial intelligences with
the plasticity enough to adapt or tune to specific needs. Being
this the case, in our opinion the core foundation of it will be
raw information processing with capability to autoorganize in the
form of models of the world and model exploitators generating
behavior. The theory of intelligence can be viewed as a theory of
action, a theory of representation or both.

7 Adaptation, learning, evolution, creativity, are facets -i.e. perceptions from
an external entity- of a system changing in response to interactions with the
world
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ABSTRACT

Engineered systems, whether called intelligent or not, principally
must rely on models to achieve their goals even in the simplest
situations. Therefore, a system’s intelligence is a consequence of the
collective intelligence embodied in its models. In this paper, we
describe intelligence measurement grounded in the general concepts
of discrete event, model-based system design methodology. We
discuss the basic elements of the approach in view of their role in
intelligence measurement.  Computational resources in both
processing and communication forms are constraints on intelligence,
but they are not determinant The architecture which configures these
resources plays a major role in the intelligence achieved. Further the
architecture must support fast and frugal heuristics tuned to the
environments in which the system is to operate. Real time processing
architectures built on discrete event modeling and simulation
principles are most suited to support “fast frugal and accurate”
intelligence. Such architectures must be designed with a software
engineering methodology that explicitly supports a system’s control
of its own computational resources and includes hooks for measuring
its intelligence in terms of the speed, frugality and accuracy of its
responses.

1 INTRODUCTION

Unless we are talking about the affluent life known to many of
us in the recent past, the real world is a threatening
environment where knowledge is limited, computational
resources are bounded, and there is no time for sophisticated
reasoning. Unfortunately, traditional models in cognitive
science, economics, and animal behavior have used theoretical
frameworks that endow rational agents with full information
of their environments, unlimited powers of reasoning and
endless time to make decisions. Tacitly accepting this
paradigm — as seems the prevalent assumption — does not
provide a promising basis for measuring intelligence, the
theme of this conference.! Indeed, to measure intelligence
requires first an understanding of the essence of intelligence as
a problem solving mechanism dedicated to the life and death
survival of organisms in the real world. Evidence and theory
from disparate sources have been accumulating that offer
alternatives to the traditional paradigm.

I NIST Workshop on Performance Metrics for Intelligent systems.

An important crystallization of the new thinking is the
“fast frugal and accurate” (FFA) perspective on real word
intelligence promoted by Todd and Gigerenzer [1]. FFA
heuristics are simple rules demanding realistic mental
resources that enable both living organisms and artificial
systems to make smart choices quickly with a minimum of
information. They are accurate because they exploit the way
that information is structured in the particular environments in
which they operate. Todd and Gigerenzer show how simple
building blocks that control attention to informative cues,
terminate search processing, and make final decisions can be
put together to form classes of heuristics that have been shown
in many studies to perform at least as well as more complex
information-hungry algorithms. Moreover, such FFA
heuristics are more robust than others when generalizing to
new data since they require fewer parameters to identify.

It is important to note that FFAs are a different breed of
heuristics. They are not optimization algorithms that have
been modified to run under computational resource
constraints, e.g., tree searches that are cut short when time or
memory run out. Typical FFA schemes enable ignorance-
based and one-reason decision making for choice, elimination
models for categorization, and satisfying heuristics for
sequential search. Leaving a full discussion of the differences
to [1], the critical distinction is that FFA’s are structured from
the start to exploit certain restrictive assumptions, such as
skewed frequency distributions, about their input data. They
work well because these assumptions often happen to hold for
data from the real world. Thus FFAs are not generic inference
engines operating on specialized knowledge bases (the
paradigm of expert systems) nor other generalized processing
structures (e.g., [2]) operating under limited time and memory
constraints. An organism’s FFAs are essentially models of the
real environment in which it has found its niche and to which
it has (been) adapted.

New kinds of models for biological neurons provide
possible mechanisms for implementing intelligence that is
characterized by fast, frugal and accurate heuristics. Work by
Gautrais and Thorpe [3] has yielded a strong argument for
“one spike per neuron” processing in biological brains. “One-
spike-per-neuron” refers to information transmission from
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neuron to neuron by single pulses (spikes) rather than pulse
trains or firing frequencies. A face recognition multi-layered
neural architecture based on the one-spike, discrete event
principles has been demonstrated to better conform to the
known time response constraints of human processing and
also to execute computationally much faster than a
comparable conventional artificial neural net [4]%. The
distinguishing feature of the one-spike neural architecture is
that it relies on a temporal, rather than a firing rate, code for
propagating information through neural processing layers.
This means that an interneuron fires as soon as it has
accumulated sufficient input “evidence” and therefore the
elapsed time to its first output spike codes the strength of this
evidence. In contrast to conventional synchronously timed
nets, in fast neural architectures single spike information
pulses are able to traverse a multi-layered hierarchy
asynchronously and as fast as the evidential support allows.
Thorpe’s research team has also shown that “act-as-soon-as-
evidence-permits” behavior can be implemented by “order-of-
arrival” neurons which have plausible real world
implementations. Such processing is invariant with respect to
input intensity because response latencies are uniformly
affected by such changes. Moreover, coding which exploits
firing order of neurons is much more efficient than a firing-
rate code, which is based on neuron counts [3,4].

Countering the evidence that intelligence is essentially
fast, frugal and accurate is Hans Moravec’s prediction that by
2050 robot "brains" based on computers that execute 100
trillion instructions per second (IPS) will start rivaling human
intelligence [5]. Underlying this argument is that there is an
equivalence between numbers of neurons in biological brains
and IPS in artificial computers. It takes so many billions of
neurons to create an intelligent human and likewise so many
trillions of IPS to implement an intelligent robot. In strong
form this equivalence implies that pure brute force can
produce intelligence and the structures, neural or artificial,
underlying fast and frugal processing are of little significance.

2 MODEL-BASED INTELLIGENCE AND
MEASUREMENT
In this section, we discuss intelligent systems from three

perspectives: knowledge representation, execution, and
measurement. Specifically, this paper makes the case that®

2 The face recognition layered net was executed by a discrete event
simulator and took between 1 and 6 seconds to recognize a face on a
Pentium PC vs. several minutes for a conventional net on a SGI
Indigo. Recognition performance in both cases was very high. The
authors employed a training procedure which, while effective, is not
plausible as an in-situ learning mechanism.

3 We are not claiming that these are the only elements responsible for
intelligent behavior and by implication there are other means for
intelligence measurement.

o computational resources in both processing and
communication forms are constraints on intelligence,
but they are not determinant

« the architecture which configures these resources plays
a major role in the intelligence achieved

o the architecture must support fast and frugal heuristics
tuned to the environments in which the system is to
operate

o real time processing architectures built on discrete
event modeling and simulation principles are most
suited to support FFA intelligence

e such architectures must be designed with a software
engineering methodology that explicitly supports a
system’s control of its own computational resources
and includes hooks for measuring its intelligence based
on FFA standards.

2.1 Computational resources in both processing and
communication forms are constraints on
intelligence, but they are not determinant

Morevac’s claim that artificial intelligence will arise once the
processing power is there to support it can be the starting point
for a serious investigation to understand its merits. On the one
hand, we need yardsticks of intelligence and on the other,
yardsticks of computational resources (presuming that raw IPS
is not very discerning). We might have a diagram as shown in
Figure 1.

Let’s assume for a moment that we have the framework in
the form of a diagram as above, what can we do with it? We
can ask

o For a given level of resources, how smart can a system
be? This would prevent us from trying to build systems
that are infeasible with the resources at hand.

o For a given intelligence level, how much resources are
needed? This would help provide cost estimates for
given intelligence requirements.

e How well does a system utilize its resources? Where
does its intelligence stand relative to the best achievable
in its resource league? Where does its level or resources
stand relative to the best in its intelligence class?
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Intelligence

Computation/Communication resources

Figure 1: Intelligence measurement in terms of required
resources

However, the yardsticks for resources and intelligence are
not likely to be single dimensional linear orders but more
likely to be multidimensional, partial orders. Even more to
measure FFA intelligence which is environment-dependent,
we may need to condition measurement with respect to
problem classes asking which kinds of problems are
performable on which kinds of architectures.

2.2 The architecture which configures these
resources plays a major role in the intelligence
achieved

This is a truism when applied to implementation of standard
functionality — certain designs are better than others in
implementing the same input/output behavior. However, in the
absence of a well-defined characterization of intelligence in
terms of input/output behavior, the focus has so far been on
achieving intelligent behavior by whatever means possible,
not paying much attention to the critical nature of the
architectures that can support it. The results of Thorpe
mentioned above, however, suggest that FFA intelligence is
only achieved with “single-spike” neuron architectures and
would be infeasible if the same neurons were employed in the
manner assumed in conventional connectionist approaches.

2.3 The architecture must support fast and frugal
heuristics tuned to the environments in which
the system is to operate

Generalizing the idea that FFA heuristics embody models of
the environment, the ability to work with models of the
environment, one’s self and others may be taken as key
component of intelligence. Model-based design was formally
introduced around 1980s as the basis to enable systems to
reason about their own behavior in normal as well as abnormal
situations. Over the years, many architectures have been

proposed and implemented most of which typically suitable
for narrow well-defined domains. However, a generic
architecture based on simulation modeling concepts was
proposed by [6]. Briefly stated, generic model-based design
provides a generally applicable architecture in which
simulation and other engines execute models that embody
what the system employs about its environment — both
external and internal

2.4  Real time processing architectures built on
discrete event modeling and simulation
principles are most suited to support FFA
intelligence

Discrete event models can be distinguished along at least two
dimensions from traditional dynamic system models — how
they treat passage of time (stepped vs. event-driven) and how
they treat coordination of component elements (synchronous
vs. asynchronous). Recent event-based approaches enable
more realistic representation of loosely coordinated semi-
autonomous processes, while traditional models such as
differential equations and cellular automata tend to impose
strict global coordination on such components. Discrete event
concepts are also the basis for advanced distributed simulation
environments, such as the High Level Architecture (HLA) of
the Department of Defense, that employ multiple computers
exchanging data and synchronization signals through message
passing [7]. Event-based simulation is inherently efficient
since it concentrates processing attention on events —
significant changes in states that are relatively rare in space
and time - rather than continually processing every
component at every time step.

The DEVS (Discrete Event Systems Specification)
formalism [8] provides a way of expressing discrete event
models and a basis for an open distributed simulation
environment [9]. DEVS is universal for discrete event
dynamic systems and is capable of representing a wide class
of other dynamic systems. Universality for discrete event
systems is defined as the ability to represent the behavior of
any discrete event model where “represent” and “behavior”
are appropriately defined. Concerning other dynamic system
classes, DEVS can exactly simulate discrete time systems
such as cellular automata and approximate, as closely as
desired, differential equation systems. This theory is presented
in [8, 10]. It also supports hierarchical modular construction
and composition methodology [11]. This bottom-up
methodology keeps incremental complexity bounded and
permits stage-wise verification since each coupled model
“build” can be independently tested.

An abstraction is a formalism that attempts to capture the
essence of a complex phenomenon relative to a set of
behaviors of interest to a modeler. A discrete event abstraction
represents dynamic systems through two basic elements:
discretely occurring events and the time intervals that separate
them (Figure 2). It is the information carried in events and
their temporal separations that DEVS employs to approximate
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arbitrary systems. In the quantized systems [8], events are
boundary crossings and the details of the trajectories from one
crossing to another are glossed over with only the time
between crossings preserved.

bound:
ary event
I — ‘
Time ’ Time |
to cross { interval
Discrete € 1€ € Events and
Event spacing carry
Time information
Segment T T T3

Figure 2: Discrete event representation of continuous
trajectories

Recent results on discrete event neurons* show that, using
a race analogy, a net of simple discrete event neurons can find
the shortest path in a graph in the shortest time possible. Here
is an instance where fast and frugal is provably optimal! In
contrast, finding the longest path (or a long path) is much
more difficult and requires much more sophisticated neurons.
It seems uncanny — indeed, counterintuitively so — that
minimizing performance measures such as distance, time, or
cost requires simple apparatus and can be done with full
accuracy and without backtracking. As with FFA heuristics,
the mystery disolves when one recognizes that the discrete
event neural nets exploit the underlying nature of reality in
which pulses compete in parallel, and where fast competitors
come first and lock out their slower countrparts from further
progress. In the real world, fast response is paramount’ and so
minimizing time (or other meausers mapped into it) is
critically important to survival. So brains may have been
evolved to solve survival-critical problems with frugal means
(simple neurons) that embody race analogies. Finally we note
that discrete event neurons and one-spike-per-neuron
architecutres are necessary to embody the race analogy — other
models do-not work.

2.5 Such architectures must be designed with a
software engineering methodology that explicitly
supports a system’s control of its own
computational resources and includes hooks for

4 We are currently writing these results for publication.
5 This is certainly a characteristic of e-commerce at internet speed.

measuring its intelligence based on FFA
standards

Based on a wealth of basic research in a variety of disciplines,
model-based design offers not only well-defined principles to
design intelligent systems, but also can provide the means to
assess a system from its inception to realization, operation,
and eventual retirement. For example, we can assess a
system’s correctness, performance, maintenance, and cost, all
of which are reflections of a system’s degree of intelligence.
We may also rank a system degree of intelligence in terms of,
for example, intelligence of embodied models and how
intelligently — physical resources (computational and
communication resources) are used.

Model-based design suggests several ways to rank
intelligent systems based on their use of models:

¢ Distributed heterogeneous model-based architectures
rank higher than monolithic ones.

o Systems that employ models that are at a resolution
level compatible with the resources available to
interpret them rank above those that don’t.

O Model sets that include self-representation rank
above those that don’t

O Model sets that include representation of self and
others rank above those that include only self-
representation.

o Other rankings may be based on

O Model abilities to handle both non-linguistic and
linguistic queries

O System ability to maintain coherence in the
model base

Q System ability to inform meta-level models by
questioning lower level models

Q Recursive depth of the “models-of” relation.

Due to increasing complexity and size/scale of systems
(e.g., distributed agent-oreinted systems), it is becoming
imperative to follow well-defined software development
processes (e.g., waterfall, spiral, iterative, and/or incremental
process [12]). A typical software development process is
composed of  conceptualization, analysis,  design,
implementation, and testing, and operation [13]. Indeed, the
development of many contemporary  distributed,
heterogenouos systems must increasingly rely on such
development processes [14]. Furthermore, with the emergence
of archiecture-based paradigms, we can begin to devise
suitable architectures for intelligent systems [15]. The
archtiecture based apporach and software development
processes go hand in hand offering many invaluable
advantages such as incremental analysis, design, and testing.
We believe, with the adoption of a synergistic development
process (accounting for software, hardware, and bioware)
combined with an appropriate architectural paradigm, we can
incorporate, among other things, intelligence capabilities,
metrics, and measurement methods in appropriate places.

93



3 ACKNOWLEDGEMENT

This research has been supported in part by NSF Next
Generation Software (NGS) grant #E1A-9975050.

4 REFERENCES

[1] Gigerenzer, G., P.M. Todd, (1999). Simple Heuristics
That Make Us Smart, Oxford University Press.

[2] Meystel, A.M., (2000). Simulation for Meaning
Generation: Multiscale Coalitions of Autonomous
Agents, in Discrete Event Modeling and Simulation
Technologies: A Tapestry of Systems and Al-based
Theories and Methodologies, Editors: H.S. Sarjoughian,
F.E. Cellier, Springer Verlag.

[3] Gautrais, J. T. Simon, (1998). Rate coding versus
temporal order coding: a theoretical approach, Biosystems
(48)1-3, pp. 57-65

[4] Rufin, V.R., J. Gautrais, A. Delorme, T. Simon, (1998).
Face processing using one spike per neuron, Biosystems
(48)1-3 pp. 229-239

[5] Hans Moravec (1999). Rise of the Robots, Scientific
American, August 1999, pp. 124-132

[6] Zeigler, B.P., (1990). Object-Oriented Simulation with
Hierarchical, Modular Models: Intelligent Agents and
Endomorphic Systems., San Diego, CA: Academic Press

[7] Fujimoto, R. (1998). “Time Management in the High-
Level Architecture.” Simulation 71(6): 388-400.

[8] Zeigler, B.P., H. Prachofer, and T.G. Kim, (2000). Theory
of Modeling and Simulation. 2ed, New York, NY:
Academic Press

[9] Zeigler, B.P., et al. (1998). The DEVS/HLA Distributed
Simulation Environment and its Support for Predictive
Filtering, ECE, The University of Arizona.

[10] Zeigler, B.P., et. al. (1997). “The DEVS Environment for
High-performance Modeling and Simulation.” IEEE
CS&E 4(3)

[11]Zeigler, B.P. and H.S. Sarjoughian (1999). Support for
Hierarchical = Modular  Component-based  Model
Construction in DEVS/HLA. Simulation Interoperability
Workshop, Orlando, FL

[12]Pressman, R. (1997). Software Engineering: A
Practitioner's Approach, McGraw Hill

[13]1Booch G. (1996). Object Solutions: Managing the Object-
Oriented Project. Menlo Park, CA, Addison-Wesley

[14] Orfali, R., D. Harkey. (1997). The Essential Client/Server
Survival Guide, John Wiley & Sons

[15] Sarjoughian, H.S. and B.P. Zeigler (2001). “A Layered
Modeling and Simulation Architecture for Agent-based
System Development.” IEEE Proceedings (to appear)



The Intelligence of an Entity

Robby Glen Garner
Steven Boyd Henderson

Preface

Mimetic Synthesis is a new terminology that more accurately describes a programming
methodology used to mimic human behavior in a computer such as a PC. Previous
work in this field has been incorrectly categorized under various aspects of Atrtificial
Intelligence (Al).

On Intelligence

Testing and quantifying intelligence is difficult at best, even if it's human intelligence. To
Quote Tariqg Samad from “Notes on Measuring Intelligence in Constructed Systems”,
“The difficulty of compressing the multifaceted nature of intelligence into one scalar
quotient has led to proposals to consider intelligence not as one unitary quantity but as
a collection of properties that are mutually incommensurable.” Furthermore, one of the
many lessons from a century of work on human intelligence is that we still don’t really
know what intelligence is.

Mimetic Entities

The early mimetic systems developed by Robby Garner are hierarchical in structure.
This allows the “Mimetic Entity” to synthesize the combined behavior of subsystems into
a unified presentation. This structure certainly suggests that one way to measure the
intelligence of such machines is to review the hierarchical concepts it uses and the
processes that contribute to the goals of the whole system.

One of the first hierarchical mimetic synthesizers was called Albert. This program
combined the behavior of several methods that shared the same goal of simulating
human conversation. Each method represents a separate strategy used to form the
response to a human stimulus phrase.

The first method is based on a simple model of behavior, where conversation is
represented by strings of (stimulus  €esponse) nodes. The goal of this particular
method is to find a match for the user’s input stimulus in a database, and form the reply
with the corresponding “response” from the database. If the first method is not
successful, the program follows down the hierarchy from most specific method, to least
specific.
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The second method looks in a table of Boolean rules and attempts to fit a rule to the
user’s input. If a rule is satisfied, its corresponding response is used. The goal of this
method is to satisfy a Boolean expression based on the user’s input phrase.

And so on, the third method attempts to find a generalization about the user’s input
phrase using a “framed” template to determine a match. The goal of this method is to
find a generalization that applies to the user’s input phrase.

Then finally, if none of the other methods has succeeded, a final method selects a “new
topic” from a pool of unused topics. The goal of this method is merely to make a
response. (To change the subject)

So, one can see that the overall goal of simulating conversation is attempted by using a
variety of strategies, all contributing to the main goal. The hierarchical structure ensures
that the best possible response may be used.

It must be obvious that the performance of the mimetic entity with regards to simulating
a conversation depends entirely on the performance of all of these various methods or
subsystems. Yet it depends first and foremost on the person talking to it.

The Loebner Show

But what can we say about Albert’s intelligence? None of the methods used are
intelligent, so their “unified” representation is not intelligent. Albert may be perceived as
intelligent by a human being as is evidenced by the 1998 Loebner Prize Contest, but the
program is not in fact intelligent. http:/www.cs flinders.edu.au/research/Al/LoebnerPrize/

Then if we can know what intelligence is not, does that tell us what intelligence is?

No, because none of the competitors in the Loebner contest have exhibited
intelligence. At best they exhibit a behavior which seems familiar to the

user (judge), and some of them have used very cleaver means to achieve this. But the
ingenuity of the programmer does not make the program intelligent.

One also has to agree that an imitation is not the same as the thing it imitates.
Furthermore, some may object to things that are artificial for no other reason except that
they are artificial. Yet if a thing works, does it matter why it works or what it is made
from? Some people would say that if a thing is not really "intelligent" then it is an
impostor, and therefore “dangerous.” But if a tool performs a job according to
specification, why is that less intelligent than if a human being had performed the same
job?

By doing a job, there is at least one goal implied, and that is the completion of the

job. If a computer completes the same job as a human in a smaller amount of
time, we would say the computer has better performance, not better intelligence?
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Human Intelligence

In dealing with other people, we assess their intelligence on a casual basis by observing
their behavior, the things they say, their solutions to problems, or other factors, many of
which are purely subjective.

Measuring machine intelligence would be much easier if people could agree on
how to measure human intelligence!

So | think there is always a disparity between "perceived intelligence" and "actual
intelligence", especially in evaluation of human intelligence. Intelligence is not solely
performance, but is it possible to measure intelligence without also measuring a
performance?

Sometimes a performance involves a great deal of preparation and training. If a man
repeats the same sequence of behavior, practices it over and over until it can be done
repetitively without thinking, is that intelligence?

Summary

The key to true intelligence is the ability of an entity to enlist strategy to accomplish its
mission, not preconceived knowledge, or rote behavior.

Military confrontation is a good example according to R. Neil Bishop. “Time and time
again, superior firepower and resources have been overcome by an inferior force with
an intuitive strategy, which gave them a monumental advantage.”

Also strategy is the key element needed to develop successful research techniques
which, in pure science, may not even exist before the scientist begins. The strategy of
obtaining and integrating knowledge is the key to reaching beyond what is presently
known or understood.

The use of strategy applies not only to the highest level of abstraction, but is also
evident in the “rank and file” subsystems that perform even the most basic tasks
required by an entity as a whole. The strategy or algorithm employed by a programmer
may be akin to “instinct” in some systems. Is instinctive behavior intelligent?
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Performance Metrics for Intelligent Systems

John M. Evans and Elena R. Messina
Intelligent Systems Division
National Institute of Standards and Technology
Gaithersburg, MD 20899-8230

ABSTRACT

Research into intelligent systems and intelligent control is
burgeoning. However, there is no consensus on how to define or
measure an intelligent system. This lack of rigor hinders the
ability to measure progress in the field and to compare different
systems’ capabilities. We discuss some of the challenges and
issues in defining performance metrics for intelligent systems and
issue a call to action to participants in the Performance Metrics for
Intelligent Systems Workshop to define practical metrics that will
advance the state of the art and practice.

KEYWORDS:  performance metrics, intelligent systems,
intelligent control

1. INTRODUCTION

Intelligent systems are increasingly being
identified as solutions to many advanced
applications in manufacturing, defense, and other
domains. Industry workshops [4] and roadmaps
[3] specifically call for intelligent control or
intelligent systems to address needs such as

e Adaptive, reconfigurable manufacturing
equipment and processes

e Self-optimizing, science-based control of
manufacturing unit processes

e “First part correct,” that is, the ability to
design and manufacture a product correctly,
the first time and every time

e Self-diagnosing and self-maintaining systems
e Tool wear and breakage monitoring

Government agencies are basing major programs
on intelligent capabilities, for example,

e The Army Experimental Unmanned Ground
Vehicle Systems (Demo I1II)

e Defense Advanced Research Projects Agency
(DARPA)/Army Future Combat Systems

o DARPA Mobile Autonomous Robot Software
o DARPA Software for Distributed Robotics
e DARPA Tactical Mobile Robots

e National Aeronautics and Space
Administration (NASA) spacecraft and rovers

e Department of Energy (DOE) waste
remediation robot systems

e Department of Transportation (DOT)
Intelligent Vehicle Initiative

In addition to the examples above, there are
myriad other efforts in academia, industry, and
government labs of work referred to as
“intelligent systems.”  Despite the common use
of “intelligent system” and “intelligent control,”
there is no uniform definition for either term.
Generally, they are characterized by having one or
more of the following traits [1]:

e Adaptive

e (Capable of learning

e “Does the right thing” or “acts appropriately”
e Non-linear

e Autonomous symbol interpretation

e Goal-oriented

e Knowledge-based

These terms are ambiguous and qualitative.
The Intelligent Systems Division of the National
Institute of Standards and Technology has
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launched an initiative to better define what an
intelligent system is and how to measure its
performance. The mission of the Intelligent
Systems Division, one of five divisions in the
Manufacturing Engineering Laboratory, is “to
develop the measurements and standards
infrastructure needed for the application of
intelligent systems by manufacturing industries
and government agencies.”

We are working with various industry groups
and government agencies to tackle the issue of
intelligent system performance. The
Performance Metrics for Intelligent Systems
Workshop is a foundational step, which brings
together a multi-disciplinary community to help
define the highest priority areas to concentrate on,
having the highest payoff.

2. THE CHALLENGE OF DEFINING AND
MEASURING MACHINE INTELLIGENCE

Researchers have been pursuing forms of
machine intelligence for several decades.  There
have been many areas of focus, such as natural
language understanding, expert systems to aid
diagnoses, and decision-making tools for financial
systems. Closer to our domain of interest, much
effort has been focused on defining intelligent
control as a discipline, but even so, there are no

INTELLIGENT
CONTROL

CONTROL
THEORY

ARTIFICIAL
INTELLIGENCE

OPERATIONS
RESEARCH

Figure 1: Intelligent Control as of 1985

quantitative measures.

Beginning with the efforts of Fu [1] and
Saridis [3] in the seventies, there have been
numerous conferences and workshops aimed at
the topic of intelligent control. Nevertheless,
the field remains fragmented due to its
multidisciplinary nature. As noted in the first
Symposium on Intelligent Control in 1985,
intelligent control was proclaimed a theoretical
domain, in which control theory, AI, and
operations research intersected (Fig. 1 from [6]).

The definition of an intelligent system may be
considered broader than that of intelligent control.
As a “system,” there may be more constituent
parts, such as perception, world modeling, or
value judgement. Yet more disciplines are
brought into the picture. Examples of these
include data representation, image processing, and
decision theory.

Given the multi-disciplinary nature of the
systems we are concerned with, it is clear that
defining the scope and performance of these
systems is a challenge. Terminology is one of
the first hurdles that must be overcome. Different
disciplines ascribe different definitions to the
same words. For example, “complexity” may
refer to non-linear systems in one field and to
computational resources needed in another.

It is very difficult, if not impossible to
currently evaluate research into intelligent
systems. Since there are no quantitative metrics,
intercomparisons of results are not generally
possible.  Sponsors are not able to adequately
judge whether research results meet their
requirements. Potential users have no impartial
evaluation reports, a la “Consumer Reports,” of
intelligent systems, techniques, and tools. In
general, the lack of metrics slows progress.
There is a proliferation of data specific algorithms
and task-specific solutions.

One of the biggest costs paid is the duplication
of effort. New programs may be unable to have a
firm definition of past accomplishments, hence
they may fund work that repeats previous
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research. Research teams cannot leverage prior
existing work from other institutions and tend to
have to reinvent the wheel by building all of their
system’s components from scratch. They are
burdened with having to spend effort in building
components that are not part of their research
focus, instead of being able to leverage existing
“best of class” solutions and focussing on their
interests.

Another negative impact, from the sponsor's
viewpoint, is the lack of predictive ability in
assessing new applications. Without objective
performance evaluation metrics and an
understanding of capabilities and limitations, it is
difficult or impossible to assess claims of
competing approaches in formulating new
projects and programs. This leads to
inefficiencies and failures that could be avoided if
we had the measurement tools that we need.

3. ISSUES IN MEASURING PERFORMANCE

Numerous questions must be answered when
considering how to define the performance of
these intelligent systems. We will present a few
questions. Many more will arise as we delve into
the matter more closely.

e Should we measure only the external behavior
of a system? Is that the only aspect that can
feasibly be measured? Or, is there value in
decomposing a system into components and
measuring their individual capabilities?
Examples would be measuring the path
planning algorithms in isolation from the
perception and other control subsystems.

e How generic does the measure of a system’s
intelligence have to be? Should we strive for
general intelligence metrics that are domain-
independent or are we better off focussing on
application and domain-specific metrics? Are
domain-independent metrics even
meaningful?

e How do we factor in “body intelligence,” the
mechanical capabilities of a system as
opposed to the control capabilities, when
assessing the performance of a system? If we
have a mobile robot, some of its abilities to
achieve its stated goal (e.g., traverse a rubble
pile to find survivors) can be attributed to its
mechanical properties rather than its software
intelligence.

e Are testbeds a viable measure of performance,
or do they invite “gaming,” that is, encourage
solutions that are tailored to performing well
in the testbed? If we don’t have testbeds, how
can we achieve reproducible measures of
performance?

4. INITIAL OBSERVATIONS

One of the complicating factors in discussing
intelligent systems is the use of the word
“intelligence.” It is freighted with significance
and analogies to human or biological intelligence
naturally arise. The quest for standard, uniform
measures of intelligence in biological systems
remains a subject of controversy. Therefore, we
would advocate avoiding the temptation to spend
too much time striving for performance measures
that are based on human or higher level biological
systems.

Observing that we are dealing with multi-
disciplinary technologies and multiple application
domains, we should expect that no single, unique
measure of performance is feasible. Therefore,
no single overarching and generic intelligence test
will suffice. We need to strive for the right
granularity of metrics.

We must be prepared to attack the problem on
multiple fronts. It probably won’t suffice to have
just a theoretical investigation or an experimental
one. Research must proceed on the theory as
well as on gathering experimental data.

One of the key attributes of intelligent systems
is its multi-disciplinarity. This poses a challenge,
but also an opportunity. We can come together
from a variety of disciplines and form a new
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community in which we share our expertise. We
must have dialog and information exchange
amongst ourselves in order to synthesize the best
results from the different fields that contribute
towards intelligent systems research.

That is the purpose of this workshop and the
reason for the diversity of the presentations that
you will hear.

5. CALL TO ACTION

The challenge is thus to define performance
measures for new and evolving intelligent systems
technologies that can greatly improve industrial
productivity and advance government mission
objectives.  We must work together to build a
technical foundation for measuring performance.
This includes agreeing on the domains to
investigate and a common set of terminology.
We must develop theoretical foundations,
methodologies, and supporting infrastructure for
achieving our goals. Ultimately, measures must
be developed that are practical, unambiguous,
easy to use and widely deployable. We must
simultaneously focus on attainable goals and
strategies for both near-term and long-term
measures of performance, as our understanding of
them and the capabilities of the systems
themselves evolve.  Researchers, industry, and
government will benefit from practical solutions
they can readily apply, not from philosophical
ones.
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The Search for Metrics of Intelligence -- A Critical View

Lotfi A. Zadeh™

Few issues in Al generate as much heated debate as those which in one way or another
relate to the questions: “What is intelligence?”; “Can machine think?”’; and “How can intelligence
be measured?” One cannot but be greatly impressed by the incisive comments made by members
of the Intelligence Advisory Board. And yet, most of the basic issues relating to intelligence
remain unresolved -- as they were half a century ago -- when I moderated, at Columbia Univer-
sity, what I believe to have been the first debate on “Can machines think?” The debate involved
Claude Shannon, E.C. Berkeley, the author of Giant Brains, and Professor Francis J. Murray -- a
prominent mathematician who as a consultant to IBM was active in the conception and design of

computer systems.

At that time -- the dawn of the computer age -- there was a great deal of interest in the abil-
ity or inability of computers to think as humans do. To a much greater degree than is the case now,
there were exaggerated expectations. In an article of mine entitled “Thinking machines -- a new
field in electrical engineering,” which appeared in the January, 1950, issue of the Columbia Engi-
neering Quarterly (Zadeh 1950), I surveyed some of the articles which were published in the pop-
ular press at that time. The headline of one of the articles read “Electric brain capable of

translating foreign languages is being built.” The problem of machine translation seemed to be

* Professor in the Graduate School and Director, Berkeley Initiative in Soft Computing (BISC), Computer
Science Division and the Electronics Research Laboratory, Department of EECS, University of
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Research supported in part by ONR Grant FDN0014991035, NASA Grant NAC2-1177, ONR Grant
N00014-96-1-0556, ARO Grant DAAH 04-961-0341 and the BISC Program of UC Berkeley.
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close to solution. Today, we know better. In 1997, Martin Kay, one of the leading contributors to
machine translation had this to say: “Machine translation gave the initial inspiration to computa-
tional linguists and continues to motivate much of their work. That is surely fair enough since the
problem is clearly computational and obviously linguistic. But forty years of money and effort has
brought us hardly any closer to the answer. The world continues to pour money down the same
rathole with little discernible progress, with or without the linguists. The German government is

giving it a new twist: “Notice how we never seem to get anywhere on machine translation?”

The debates which raged in the past were largely of academic interest because there were
few, if any, systems that could be assessed as having a high level of intelligence. At this juncture,
this is no longer the case. Today, we can point with pride to Deep Blue, which beat Gary Kaspa-
rov. More importantly, we have a wide variety of systems which can perform highly non-trivial
tasks involving recognition, decision and control. We are, in fact, witnessing the beginning of

what may be described without exaggeration as the Intelligent Systems Revolution.

When Al was christened in 1956, it became the standard bearer of efforts to devise and
build machines that could exhibit human-like intelligence in performing various tasks. For some
time thereafter, the Al scene was one of unbridled enthusiasm and, as we now realize, unrealistic
expectations. In judging that period, however, what should be remembered is that -- as Jules Verne
astutely observed at the turn of the century -- scientific progress is driven by exaggerated expecta-

tions.

It took forty years for a computer to challenge and beat a chess champion. Why did it take
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so long to achieve some of AI’s objectives? In the first place, the basic difficulty of approximating
to what humans can do so easily without any measurements and any computations, €.g., under-
stand speech, read handwriting, summarize a story and park a car, was greatly underestimated.
More important, however, is the fact that the needed technologies and methodologies were not in
place. In particular, we did not have the highly capable sensors and powerful computers which we
have today, and we did not employ such recently developed methodologies as neurocomputing,

evolutionary computing, probabilistic computing, machine learning and fuzzy logic.

In the past, what were called intelligent systems were for the most part symbol-manipula-
tion oriented, e.g., machine translation systems, text understanding systems and game playing
systems, among others. Today, what we see is the rapidly growing visibility of systems which are
sensor-based and have embedded intelligence, e.g., smart washing machines, smart air condition-
ers, smart rice cookers and smart automobile transmissions. The counterpart of the concept of IQ
in such systems is what might be called Machine IQ, or simply MIQ (Zadeh 1994). However,
what is important to recognize is that MIQ -- as a metric of machine intelligence -- is product-spe-
cific and does not involve the same dimensions as human IQ. Furthermore, MIQ is relative. Thus,
the MIQ of, say, a camera made in 1990 would be a measure of its intelligence relative to cameras

made during the same period, and would be much lower than the MIQ of cameras made today.

Viewed in this perspective, the focus of activity in applications of machine intelligence is
shifting from writing computer programs that can prove difficult theorems, understand text, pro-
vide expert advice and beat a chess champion, to more mundane tasks devolving on the concep-

tion, design and construction of products and systems that have a high MIQ, making them

107



July 18, 2000

reliable, capable, affordable and user-friendly. Among recent examples of systems of this kind are
programs which can detect the presence of known or new viruses in computer programs; checkout
scanners which can identify fruit and vegetables through the use of scent sensors; car navigation
systems which can guide a driver to a desired destination; password authentication systems
employing biometric typing information; ATM eyeprint machines for identity verification; and
molecular breath analyzers which are capable of diagnosing lung cancer, stomach ulcers and other

diseases.

If MIQ is accepted as a metric of machine intelligence, then a particular machine may be
said to be highly intelligent if has a high MIQ. But this beg the question of how the MIQ of a class
of machines could be measured. Comments made by members of the Intelligent Advisory Board
provide some guidelines. But a thesis that I should like to put on the table is that the existing con-
ceptual framework of AI -- which is based on first-order two-valued logic -- is incapable of pro-

viding a suitable foundation for constructing realistic metrics of IQ and MIQ.

The problem with predicate-logic-based Al is that it embraces the principle of the
excluded middle, which asserts that every proposition is either true or false, with no shades of
gray allowed. But in the real world, as perceived by humans, it is partiality rather than categoricity
that is the norm. Thus, we generally deal with partial knowledge, partial order, partial truth, partial
certainty, partial causality and partial understanding. The essentiality of the role of partiality in
human cognition has been slow in gaining acceptance in Al. Without employing the notion of par-

tiality, realistic metrics of IQ and MIQ cannot be constructed.
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Another concept that plays a basic role in human cognition is that of granularity, and,
more particularly, that of f-granularity. In essence, f-granularity is a concomitant of the bounded
ability of sensory organs and, ultimately, the brain, to resolve detail and store information. What
this means is that (a) the boundaries of perceived classes are not sharply defined; and (b) values of
perceived attributes are granulated, with a granule being a clump of values drawn together by
indistinguishability, similarity, proximity or functionality. For example, the granules of Age might
be: very young, young, middle-aged, old and very old. Similarly, the granules of face may be:
nose, cheeks, chin, forehead, etc. F-granularity underlies the concept of a linguistic variable in

fuzzy logic.

The concepts of partiality and f-granularity play key roles in what may be called Precisi-
ated Natural Language (PNL). What I should like to suggest is that PNL could play a central role
in formulation of metrics of intelligence. How these could be done is a complex task that will
require a major effort to yield concrete results. In what follows, I will confine myself to sketching

the basics of PNL and pointing to its use as a concept definition language.

Natural languages are expressive but imprecise. Mathematical languages are inexpressive
but precise. Basically, PNL draws on a natural language (NL) and a mathematical language (ML)
to provide a language which is precise and yet far more expressive than conventional meaning-

representation and definition languages based on predicate logic.

In essence, PNL is a subset of NL which consists of propositions which are precisiable

through translation into a precisiation language GCL (Generalized Constraint Language). An
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example of a precisiable proposition is: It is very unlikely that there will be a significant increase
in the price of oil in the near future. The point of departure in PNL is the assumption that the
meaning of a precisiable proposition, p, is expressible as a generalized constraint on a variable.

Usually, the constrained variable and the constraining relation are implicit rather than explicit in

p-

A concept which has a position of centrality in GCL is that of a generalized constraint
expressed as X isr R, where X is the constrained variable, R is the constraining relation, and isr
(pronounced as ezar) 1s a variable copula in which r is a discrete-valued indexing variable whose
value defines the way in which R constrains X. Among the principal types of constraints are the
following: possibilistic constraint, r=blank, with R playing the role of the possibility distribution
of X; veristic constraint, r=v, in which case R is the verity (truth) distribution of X; probabilistic
constraint, r=p, in which case X is a random variable and R is its probability distribution; r=rs, in
which case X is a fuzzy-set-valued random variable (fuzzy random set) and R is its fuzzy-set-val-
ued probability distribution; and fuzzy-graph constraint, r=fg, in which case X is a fuzzy-set-val-

ued variable and R is its fuzzy-set-valued possibility distribution.

With these constraints serving as basic building blocks, which are analogous to terminal
symbols in a formal language, more complex (composite) constraints may be constructed through
the use of a grammar. Simple examples of composite constraints are: X isr R and X iss S; and, if X
isr R then Y iss S, or, equivalently, Y iss S if X isr R. The collection of composite constraints
forms the Generalized Constraint Language (GCL). The semantics of GCL is defined by the rules

that govern combination and propagation of generalized constraints. These rules coincide with the
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rules of inference in fuzzy logic (FL).

The capability of PNL to serve as a powerful definition language depends in large measure
on the fact that, by construction, GCL is maximally expressive. The conclusion that emerges from
this fact is that metrics of intelligence, if they can be defined, will necessarily have to be defined in
terms of PNL and have an algorithmic structure (Zadeh 1976). What this implies is that realistic
metrization of intelligence is not possible within the conceptual structure of existing methods of
definition and measurement. We cannot expect a concept as complex as that of intelligence to be

definable in traditional terms.
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ABSTRACT

System intelligence can be measured experimentally either through
benchmark tests, or theoretically through the formal analysis of
system software architecture and hardware configurations. The latter
approach is pursued here, since it serves directly as the criteria for
designing and engineering intelligent systems in a directed manner,
rather than by trial and error. To this end, a structure of problem
solving and learning of machine is proposed. Once a machine is
represented with the structure, the intelligence can be measured via
transforming it into an equivalent linguistic structure. A simple
example is also provided.

KEYWORDS: measure of system intelligence, measure by
linguistic equivalence, machine description language

1. INTRODUCTION

The intelligence of systems is emergent when the systems are
able to accomplish loosely defined but complex tasks in an
unstructured and uncertain environment. The intelligence can
be manifested by the capability of systems to autonomously
synthesize goal-oriented behaviors in adaption errors, faults,
and unexpected events through the real-time connection of
sensing and action. However, we still do not have a
satisfactory quantitative way to characterize the “intelligence”
of systems. There are many kinds of intelligent systems in
various fields. The adjective ‘intelligent’ is quite widely used
to describe their systems developed by many system engineers
and companies. One developer may say that his/her system is
more intelligent than the others, but it can happen that another
claims the same thing. In this case, who can say one is more
intelligent than the others? One must have a kind of measure
of intelligence for systems or machines in order to answer this
question. In this sense, it is worthwhile to provide a measure
on how intelligent a machine is.

Many intelligent system techniques have been developed
and studied so far, but only a few studies have been done on
‘how to measure intelligence of systems.” J. S. Albus
introduced the theory of intelligence in an engineering
viewpoint [1]. G. Zames initiated an effort for defining such an
index as approximate a measure of the “task” and
“satisfactory” performances an “intelligent controller” could

achieve versus those that a classical controller could achieve
[2]. The challenge involves characterization of performance in
unknown environments, learning, controller and task
complexity, and associated tradeoffs. E. C. Chalfant and S.
Lee suggested an engineering perspective [3]. They thought
that one can represent all tasks of a machine in the form of
graphs and find an equivalent language for the graphs. Since a
language consists of grammar and vocabulary, the descriptive
power of a machine can be represented by the grammar and
the vocabulary. Bien, et al. [4][5] proposed a couple of
methods to measure how much a machine is intelligent; they
considered the questions from the ontological (functional) and
phenomenological (behavioral) definitions on intelligent
machine.

Establishing the measure of system intelligence should
not only be able to turn the intelligent system into a formal
academic discipline but also provide a means of designing
better and more powerful intelligent systems in practice. The
measure of intelligence of a system or, more precisely, a
constructed system with autonomy should take into
consideration various aspects of intelligence ranging from
perception, understanding, and problem solving to
generalization and learning from experience. A. Meystel
proposed a vector of system intelligence as a collection of
features representing intelligent functions of a system. The list
of such features can be very comprehensive indeed. However,
formulating the measure of system intelligence based on such
a vector may not necessarily represent the essence of system
intelligence. The functional features describing the aspect of
intelligent behaviors may obscure the existing internal engine
by which intelligent behaviors are generated.

To begin with, the following questions are raised for
answer prior to the definition of the metric of system
intelligence:

(a) Should the intelligence measure be goal-dependent or
goal-independent?

(b) Should the intelligence measure be time-varying or
time-invariant?

(c) Should the intelligence measure be
dependent or resource-independent?

resource-

For (a), it raises a question whether there exists a
universal measure of system intelligence such that the
intelligence of systems can be compared independently of the
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given goals. A goal-independent measure may be more
difficult to define, if not impossible, and more controversial. A
goal-dependent measure, however abstract the goal may be,
can allow clear comparison among the systems of different
architecture but with the same goal. For instance, for the latter
case, intelligence can be represented as how efficiently, and
how optimally a system reaches the given goal by itself, i.e.,
the power of automatically solving problems defined as the
discrepancy between the goal and the current state.

For (b), it represents whether the intelligence measure of a
system should solely be based on problem-solving capability
at time ¢ or it should contain the potential increase of problem-
solving capability in the future based on learning. Both are
necessary. But, it is better to define the two separately before
integrating them together in one measure.

For (c), it raises an issue whether the resources required
for building systems and system operation should play a role
for defining the measure of intelligence. As mentioned above,
the efficiency in problem solving should be included in the
measure: for instance, the time and energy required to reach a
solution should be taken into consideration together with the
optimality of the solution. But, it is not clear whether we
should or should not include the cost of building a system.

Section 2 provides definitions of engineering metric of
system intelligence based on the above three questions. In
Section 3, machine intelligence structure is proposed, and an
equivalent linguistic structure follows in Section 4. Section 5
shows an example with a robotic arm. Finally, Section 6
concludes the paper.

2. DEFINITION OF ENGINEERING METRIC
OF SYSTEM INTELLIGENCE

System intelligence can be measured under considering
various points of views described in the previous section. An
approach in engineering perspective is pursued here with goal-
oriented, time-dependent, and resource-dependent definition
of engineering metric of system intelligence. We define
machine intelligence quotient (MIQ) in the following way.

The measure of system intelligence as problem-solving
capability at time ¢ for the given goal set g, denoted by MIQ(g,
t), is defined by the capability of solving problems toward the
given goal set where the capability can be measured by the
scope of constraints (environmental variations), together with
the time and resources required, under which the system
succeeds in reaching the given goals.

The measure of self-improvement of system intelligence
as learning capability with respect to time ¢, denoted by
dMIQ(g, t), can be defined by the rate of increasing MIQ(g, t)
with respect to time based on learning from experience.
Capability of learning in the time duration of (¢, #) is
represented by the integration of dMIQ(g, t) between ¢; and ¢,.

Now, the total measure of system intelligence, tMIQ, is
defined by

tMIQ =max[MIQ(g.t,) + ]dMlQ(g,t)dz] . (1)

ty

Let tmax be the time when the maximum of tMIQ is
obtained. The learning rate is then defined by

t
max delQ(g,t)dt/tmax .
t

fy

Note that the universal measure of system intelligence,
uMIQ, may be defined in terms of integration of MIQ with
respect to goal, i.e.,

uMIQ = | max[MIQ(g,t0)+tfdMlQ(g,t)dt]a’g )
geG t L

where G is the set of all goals.

As mentioned above, resources required for the machine
is combined into the machine intelligence, MIQ to resource
ratio, YMIQ, can be represented by

rMIQ = tMIQ [resources . (3)

3. MACHINE INTELLIGENCE

As described in the previous section, machine intelligence can
be measured once MIQ(g, t) and dMIQ(g, t) are defined. We
now formulate the way of defining two quantities, MIQ
(problem-solving capability) and dMIQ (rate of increasing
MIQ based on learning capability).

The first step of problem solving is to understand the
situation and define what are the problems to solve. This
requires identifying the gap between the goal and current
states as well as recognizing the constraints and opportunities
imposed by the environment. Then follows the planning or
decision-making to reduce the gap under constraints. The first
step requires perception and understanding, whereas the
second step requires action and planning. Perception and
action can be represented as logical sensor and actuator
systems, respectively, in a form of hierarchical graphs of
declarative knowledge components. Understanding can be
represented as the connection of what have been perceived to
system internal knowledge. Planning can be represented as the
projection of what have been understood to the logical
actuator system. The mechanism of these connections can be

rule-based. The overall structure of problem solving
mechanism is represented in Figure 1 with solid-line
connections.

Regarding the learning capability, a higher level of
consciousness that monitors these activities of understanding
and planning may exist in the form of thinking (a self-driven
function that monitors understanding and planning in the form
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of questioning, virtual manipulation). In case that the machine
cannot understand an obtained data from logical sensors by
perception, the consciousness/emotion may adjust the
knowledge to allow the obtained data for understanding, i.e.,
identifying the gap between the goal and current states as well
as recognizing the constraints and opportunities imposed by
the environment. In addition, when an action already taken is
decided to be further improved, the consciousness/emotion
may fix its knowledge to give a better plan later on. The
structure of learning mechanism is also shown in Figure 1
with dotted-line connection.

Logical
sSensors

:Consciousnes
1 /Emotion
1

Logical
actuator;

: Problem solving structuréN

: Learning structure

Figure 1. Structure of Machine Intelligence

The logical sensors and actuators as well as knowledge
and constraint can be represented by an equivalent linguistic
form. The same is true for representing the connection and
projection associated with understanding and planning. If the
functions of a system embedded in its hardware and software
can be represented as a linguistic equivalent, based on the
above observation, the MIQ and dMIQ of the system may be
defined in the equivalent linguistic space. Thus, for a given
machine to measure its intelligence, transforming the machine
itself into this structure of problem solving and learning is first
conducted, and then transforming it into the equivalent
linguistic structure is to be done, which is discussed in the
next section.

4. MEASURE BY LINGUISTIC EQUIVALENCE

Transforming system architecture into an equivalent formal
language structure, a consistent measure of machine
intelligence associated with the corresponding formal
language can be obtained.

Any generic language used to build models representing
diverse architectures must contain mechanisms to implement
the features of all these architectures. For example, the parallel
structure of the subsumption model requires parallelism in the
language. At the other extreme, the functionality of a
centralized planner must also be representable. If the structure
of the model differs, we must be prepared to clearly determine
equivalent operation.

4.1 The Machine Description Language

The basic unit of the Machine Description Language (MDL) is
a behavior. The behavior nit is analogous to a sentence or
statement constructed according to grammatical rules. There
statements are conglomerated to form a meaningful system.
The paper defines the grammatical rules of syntax of the
Machine Description Language. Generating the semantics of
an entire system is analogous to writing a program in a given
system.

An MDL model has a hierarchical layered architecture
composed of a number of various behaviors, some simple, and
some complex. The simplest possible behavior is based on
direct triggering by a single binary sensor which elicits a
simple actuator response. For example, an on/off contact
switch can trigger a behavior called “bump” which causes a
short reverse movement combined with a turn.

Behavior modules are collected in groups which
implement a complete autonomous task, such as obstacle
detection. The collection of behaviors is called a wrapped
behavior. The linguistic analogy is a paragraph of subroutine
hich encapsulates a single topic or function.

The composite wrapped behavior collectively implements
some useful autonomous task. For example, a group of bump
behaviors based on different contact sensors can be wrapped
to form an obstacle rerouting wrapped behavior based on
direct contact. If ultrasonic range detectors are added, new
strands can be added to the composite object rerouting
behavior, and the improved behavior them before bumping
them. The old bump behaviors are kept as backups.

4.2 Analytical Measures with MDL

The performance of the system described here can be
measured using traditional back box empirical techniques. For
example, we can time its performance in executing a
prescribed task. Alternatively, structural (linguistic) analyses
of the system can be used to determine theoretical bounds on
performance independent of implementational efficiency.

Structural analysis begins with identification of
measurable quantities and their effects on performance. Many
structural features can be measured; each contributes to the
emergent intelligence of the completed system in a different
way.

4.2.1 Behavior Attributes

We first consider measurable attributes of a behavior. Some of
the measurable structural features are:

Strand Count and Strand Segment Count: A behavior has some
number of strands (i.e., sensor to actuator information path)
associated with it. Strands are regarded as instantaneous
communication links for the purpose of measurement. The
information packet propagation time between nodes, trigger,
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and taps is zero. The number and thickness of strands in a
single behavior provides a measure of the resolution of
sensory information, trigger situation discernability, and the
dexterity or controllability of the actuator system. More
fundamentally, strand segment count and thickness together
measure the information transport capacity of the behavior.

Node Count: Node count captures the complexity of the sensor
and actuator trees of a behavior. The node count is taken as the
sum of nodes and taps for both sensor and actuator trees.

Trigger Propagation Time: Each trigger has three measurable
attributes  indicating the dimensionality of the input
(parameters of the sensed situation), the dimensionality of the
output (parameters of the desired response, based on the
sensed situation) and the propagation time of the information,
i.e., the delay between a sensed situation and the resultant
response.

Node Propagation Time: The delay an information packet
encounters between the time it enters a tap node, fusion node,
or arbitration node and the time it (or the effects of a change in
the information) exits the node, is termed node propagation
time. It represents the processing time required to fuse
information, to arbitrate competing controls, or to extract or
combine information.

Strand Propagation time: The strand propagation time id the
time for an information packet to travel from the sensor at the
beginning of the strand to the actuator at the end of the strand.

Behavior Response Time: The response time of a behavior is
the sum of all information propagation timers along the
longest path between raw sensor input and raw actuator
output. The path may include nodes from other behaviors but
will include only one trigger propagation time. This differ
from the propagation time of the longest strand in that the
strand propagation time is measured from tap to tap, whereas
the behavior response time is measured from raw sensor input
to raw actuator output. Behavior response time is computed
as:

B=max(Xo; +7) 6

where
B : behavior response time
o, : node propagation time for node i
T : trigger propagation time

Behavior response time can also be measured empirically, as
long as the response can be isolated from the response of all
other behaviors.

4.2.2 System Attributes
Next we consider attributes of the combined system:

Trigger of Behavior Count: The number of separate triggers
(which is equivalent to the number of behavior modules)

indicates the number of separate situations and corresponding
responses, which the system can elicit, based on its sensory
information. The total number of triggers in the entire system
is and indication of complexity of the system and
sophistication of response (assuming a well-designed system).

Strand Distribution: Strands which rely on many lower level
strands provide more abstract, goal-directed, and strategic
stimulus-response relationships, whereas the lower level
strands provide greater reactivity and quicker response. The
distribution of the strands between these extremes indicates
the tendency for the system to generate behavior based on
reflexes or impulses vs. goal-seeking behavior. One measure
of this characteristic is the distribution of behavior
propagation times. Standard statistical measures such as mean
and median behavior propagation times, standard deviation,
minimum and maximum propagation, describe the
distribution. A median propagation time biased toward the
minimum indicates a more quickly responsive and reflexive
system whereas a bias toward the maximum indicated a
deliberative system.

Layering Depth: Another measure of deliberativeness is the
layering depth. The layering depth can be measured as the
number of trees belonging to different behaviors which an
information packet must traverse to reach the raw motors from
the trigger. Because each group of wrapped behaviors
comprises an autonomous set of behaviors, the layering depth
or maximum depth of wrappers indicated the sophistication of
autonomy. A system, which is more deeply wrapped, may
indicate that it can perform more complex tasks autonomously.
Each behavior added to a wrapped behavior indicates that
some environmental situation can arise which s not handled
optimally by the wrapped behavior by itself If a wrapped
behavior s itself wrapped along with new behaviors, the newly
wrapped set handles all the environmental stimuli of the
original wrapper plus all the situations detected by the new
behviors.

MIQ: The MIQ (Machine Intelligence Quotient) is then
defined as the product of the complexity of tasks the system
can handle and the performance in task execution. This
measure embodies the tradeoff between reflexivity (speed) and
deliberativity (complexity). Task complexity is dependent both
on the complexity and quantity of the tree structures. The
complexity of tasks can be measured using the system
attributes listed above, namely, trigger count, strand
distribution, layering depth, strand count, and node count. We
combine these as a weighted sum:

T=w,Y+wWs0+wWyA+ ws0 + WK (5)

where
T : Task complexity ability
y : Trigger count

6 : Average strand propagation time overall machine
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A : Layering depth
o : Total strand count in machine

K : Total node count in machine
Wy, Ws, Wy, Wg , W, : Respective weights

Performance in task execution is derived from the collective
performance of behaviors. This can be computed as the
weighted sum of behavior response time and inverse average
strand propagation time (since speed increase as strand length
decreases ):

E=wgB+ws [0 (6)

MIQ is then
MIQO=T-E @)

Resource: Machine “resource” is a measure of implementation
requirements based on the architectural design of the machine.
The resource is defined as the product of cost and volume. We
compute the resource based on the number of processors and
communication links required to implement the system
directly in a parallel architecture. Processors are expensive
while  communication links are cheap. However,
communication links can become numerous and occupy a
large part of the volume of a machine. These costs and
volumes are likely to change with new technology. The cost of
the system is the sum of the costs of the processors (trigger,
nodes, and taps) required. We assume one simple processor
per trigger, node, or tap. We denote this as

C=Cy+Crm 8)
where
C : cost of machine
7 :node count

C,,Cy : cost of trigger and node processors

The volume of the system is computed the same way:

V=Vy+V,m )

Then resource is
R=cCV (10)

and the rMIQ is
rMIQ = MIQ/R an

5. ENGINEERING CASE STUDY

A simple grasp controller based on the subsumption style of
robot control uses a gripper beam and finger contacts as
sensors as shown in Figure 2.

robot
— body

contact

gripper
beam switc

Figure 2. A Simple Robot Arm

stop closin i
switch contacO— pretract gargr]n Jj

close gripper§

Figure 3. Subsumption Network

beam broken .

. arm extension

Figure 3 illustrates the simple subsumption network
which generates the behavior of the robot. The extend arm
behavior is always extends the arm (we ignore the condition of
a fully extended arm). As soon as the gripper beam is broken,
the sensor causes the “close grippers” behavior to trigger. The
white motor node simultaneously inhibits the arm from
extending with an inhibition node and activates the gripper
closure actuator, causing the gripper to begin closing. (The
gray nodes are taps — in this example they are motor taps or
arbitrators.) When the grippers contact the object, the contact
switch is closed, causing the “stop closing gripper, retract
arm” behavior to trigger. The white node on the output of this
behavior is a sequential node — first the gripper closure motor
strand is inhibited, causing the gripper to first stop squeezing.
Finally, the behavior subsumes the output of the “extend arm”
behavior using a subsumption node, causing the arm to retract.

The MIQ and dMIQ of this system is easy to compute. All
weights are set to one to simplify the example. There are three
behaviors. The “extend arm” behavior is a trigger and a raw
motor node (the tap nodes belong to the /”close gripper” and
“stop gripper...” behaviors). The behavior response time for
“extend arm” is therefore 1 + 1 = 2. There is one strand in this
behavior. The “close grippers” behavior has one raw sensor
node, one motor node tree node, and either one raw motor
node or one motor tap; both of the two strands are the same
length, so we may use either. The response time is 3 + 1 = 4.
The “stop closing...” behavior similarly has a response time of
4 and a strand count of two. The mean behavior response or
propagation time is (2 + 4 +4) / 3, or 3.333. Layering depth is
two, and system strand count is 5. Average strand propagation
time over the entire system is 3 +3 +3 +3 + 1) /5, or 2.6.
There are nine nodes and nine strand segments in the entire
system.

Based on these numbers, task complexity ability is 3 + 2.6
+2+5+9=21.6. Remember, this number means little except
as a comparative measure. Performance is 3.333 + 0.385 =
3.718. MIQ is then roughly 21.6 + 3.7 = 25.3. If we assume
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costs and volume of one, then cost and volume are both 9 + 9
= 18. Resource is (18)(18) = 324, and the rMIQ is 21.6/324 =
0.0667

6. CONCLUSION

We have presented three important issues, which should be
considered when measuring machine intelligence, and
introduced the structure of machine intelligence, which shows
the internal mechanism of machine taking into account the
three issues. Any machine can be represented by the proposed
structure and the structure can be transformed into an
equivalent linguistic structure so that one may define the
metric of the machine intelligence in an analytical way.

In this paper, an equivalent linguistic structure has been
proposed. It needs to be further developed to present linguistic
structure of machine intelligence for both M/Q and dMIQ with
respect to goals and time.

The formulation on MIQ, dMIQ, and rMIQ in Section 2
will be a good guide for defining machine intelligence since
its clearness in the sense of goal-dependency, time-
varyingness, and resource-dependency.
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ABSTRACT

There are now so many architectures for intelligent systems:
deliberative planning vs. reactive acting, behavioral subsuming
vs. hierarchical structuring, machine learning vs. logic reasoning,
and symbolic representation vs. procedural knowledge. The
arguments from all schools are all based on how natural systems
(i.e., biologically inspired, from basic forms of life to high level
intelligence) work by taking the parts that support their
architectures. In this paper, we take an engineering point of view,
i.e., by using requirements specification and system verification
as the measurement tool. Since most intelligent systems are real-
time dynamic systems (all lives are), requirements specification
should be able to represent timed properties. We have developed
timed V-automata that fit to this purpose. We will present this
formal specification, examples for specifying requirements and a
general procedure for verification.

KEYWORDS: formal specification, constraint-based

requirements, system verification

1. INTRODUCTION AND MOTIVATION

Over the last half a century, intelligent systems have
become more and more important to human society, from
everyday life to exploration adventures. However, unlike
most other engineering fields, there has been little effort
towards developing sound and deep foundations for
quantitatively measurement and understanding such
systems. The lack of measurement and understanding leads
to unsatisfactory behavior or even potential danger for
customers. The systems may not achieve desired
performance in certain environments, or, the systems may
even result in catastrophe in life-critical circumstances.
Many researchers have suggested measures of
performance for intelligent systems, such as the Turing
Test [12], Newell’s expanded list [9,10] and Albus’s
definition of intelligence [4]. However, most of these
measures are not based on formal quantitative metrics.
There are also efforts on comparing performance on pre-
defined tasks, such as a soccer competition [11]. However,

these methods are domain specific therefore hard to apply
to general cases. We advocate formal methods for
specifying performance requirements of intelligent
systems. Much research has been done on formal methods
(http://archive.comlab.ox.ac.uk/formal-methods.html) over
the last twenty years. In this paper, we explore one of the
approaches, namely, using timed V-automata for
specifying performance requirements.

The timed V-automata model was developed in [13,
17] as an extension of discrete time V-automata [8] to
continuous time, annotations with real-time. Timed V-
automata are simple yet able to represent many important
features of dynamic systems such as safety, stability,
reachability and real-time response. In the rest of this
paper, we introduce the formal definition of timed V-
automata first, then present examples of timed V-automata
for representing performance metrics, and finally describe
a general verification procedure for this type of
requirements specification.

2. TIMED V-AUTOMATA

In general, there are two uses of automata: 1. to describe
computations, such as input/output state automata, and 2.
to characterize a set of sequences, such as regular
grammars/languages. Examples of the first category are
mostly deterministic and examples of the second category
are mostly non-deterministic. However, all the original
automata work is based on discrete time steps/sequences.
Approaches to extending automata to continuous time have
been explored in hybrid systems community over the last
decades [1,2,7]. The timed V-automata model that we
developed belongs to the second category, i.e., non-
deterministic finite state automata specifying behaviors
over continuous time. The discrete time version of V-
automata was originally proposed as formalism for the
specification and verification of temporal properties of
concurrent programs [8].
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2.1. Syntax

Syntactically, a timed V-automaton is defined as follows.

[Definition 1] A V-automaton A is a quintuple (Q, R, S, €,
¢) where Q is a finite set of automaton-states, R < Q is a
set of recurrent states and S € Q is a set of stable states.
With each q € Q, we associate an assertion e(q), which
characterizes the entry condition under which the
automaton may start its activity in q. With each pair q, q’
e Q, we associate an assertion c(q, q’), which
characterizes the transition condition under which the
automaton may move from q to q’. R and S are
generalizations of accepting states. We denote by B = Q —
(R U S) the set of non-accepting (bad) states. Let R* be the
set of non-negative real numbers representing time
durations. A timed V-automaton is a triple (A, T, 1) where
A is a V-automaton, T < Q is a set of timed automaton-
states and T: T U {B} — R" U {0} is a time function.

One of the engineering advantages of using automata
as a specification language is its graphical representation.

—F

(a) (b) (©)

Figure 1. Examples of timed V-automata

2.2. Semantics

Semantically, each assertion denotes a constraint defined
on a domain of interest. Let D be a domain of interest; D
can be finite, discrete, or continuous, or a cross product of
a finite number of domains. Physically, D can represent,
for example, speeds, distances, torques, sentences,
commands or a combination of the above. A constraint C
defined on D is a subset of D, C < D. Physically, a
constraint represents certain relation on a domain, such as
a relation between external environment stimuli and an
agent’s internal knowledge representation, or, a relation
between internal states and actions, or, the relation
between the current and next state. An element d in
domain D satisfies constraint C, if and only if d € C.

The semantics of timed V-automaton is defined as
follows. Let T be a time domain, which can be continuous,
for example, R*. First, let us define runs of V-automata.
Let A=(Q,R, S, e,c) be aV-automaton and v: T — D be
a function of time. A run of A over v is a function r: T —Q
satisfying:

It is useful and illuminating to represent timed V-automata
by diagrams. A timed V-automaton can be depicted by a
labeled directed graph, where automaton-states are
depicted by circle nodes and transition relations are by
directional arcs. In addition, each automaton-state may
have an entry arc pointing to it; each recurrent state is
depicted by a diamond and each stable state is depicted by
a square, inscribed within a circle. Nodes and arcs are
labeled by assertions as follows. A node or an arc that is
left unlabeled is considered to be labeled with true.
Furthermore, (1) if an automaton-state q is labeled by y
and its entry arc is labeled by ¢, the entry condition e(q) is
given by e(q) = y A@; if there is no entry arc, e(q) = false,
and (2) if arcs from q to q’ are labeled by ¢;, i =1...n, and
q’ is labeled by W, the transition condition c(q, q’) is given
by ¢(q, @°) = (@1 Vv...v@,) Ay; if there is no arc from q to
q’, c(q, q°) = false. A T-state is denoted by a nonnegative
real number indicating its time bound. Some examples of
timed V-automata are shown in Figure 1.

E

(d
1. Initiality: v(0) € e(r(0));
2. Consecution:

a. Inductivity: V>0, 3JqeQ, t'<tVt”,
t'<t’<t, r(t”)=q and v(t) € c((t”), r(t))
and

b.  Continuity: Vt, 3qe Q, t’>t, V", t<t’<t’,
r(t”)=q and v(t”) € c(r(t), r(t”)).

When T is discrete, the two conditions in
Consecution reduce to one, i.e., Vt>0, v(t) €
c(r(pre(t)), r(t)) where pre(t) is the previous time
point of t.

If r is a run, let Inf(r) be the set of automaton-states
appearing infinitely many times in r, i.e., Inf(r) =
{qVt3r=t, r(t')=q}. A run is called accepting if and only if

1. Inf(r) NR#0, ie., some of states appearing

infinitely many times in r belong to R, or

2. Inf(r) c S, i.e., all the states appearing infinitely

many times in r belong to S.

For a timed V-automaton, in addition for a run to be
accepting, it has to satisfy time constraints. Let I — T be a
time interval and |I| be the time measurement, and let r|l be
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a segment of r over time interval I. A run satisfies time
constraints if and only if:
1. Local: For any q € T any time interval L, if ][ is a
segment of consecutive states of q, then [I| <1(q);
2. Global: For any time interval I, if rfl is a segment
of consecutive states of BUS, then LXB(r(t))dt
<1(B), where xg. Q—{0,1} is the characterization
function for the set B.

[Definition 2] A timed V-automaton TA = (A, T, 1)
accepts a trace v, if and only if

1. All runs are accepting for A;

2. All runs satisfy the time constraints.

With the semantics defined, we can infer that, for the
timed V-automata in Figure 1, (a) specifies the behavior of
reachability, i.e., eventually the system should satisfy
constraint G, (b) specifies the behavior of safety, i.e.
constraint G is never satisfied, (c) specifies the behavior of
bounded response, i.e., whenever constraint E is satisfied,
constraint F will be satisfied within bounded time and (d)
specifies the behavior of real-time response, i.e., whenever
constraint E is satisfied, constraint F will be satisfied
within 5 time units.

3. EXAMPLES OF PERFORMANCE
SPECIFICATION

Timed V-automata are simple yet powerful for the
specification of behaviors of dynamic systems, since it
integrates constraint specification with timed dynamic
behavior specification.

3.1. Examples of Constraint Specification

Constraint ~ specification alone can specify many
performance metrics. Constraints specify relations between
external environment stimuli and an agent’s internal
knowledge representation, or between internal states and
actions, or between the current and next states. Constraints
can be finite, discrete or continuous, or any combination of
the above. Constraints can be linear, nonlinear, equalities
or inequalities. Moreover, constraints can also specify
optimal conditions or optimality with extra constraints, or
combinations of multiple optimal criteria and additional
constraints.

Considering the following examples for specifying
constraints:

1. Inequality: f(x) < 0 where x is a vector of
variables and f is a vector of functions.
Optimality: min [f(x)| where |x| is a norm for x.
Negation: x #y.

Constrained Optimality: min|f(x)| given g(x)<0.
Robustness: Let f(x) be a set of output functions
with x as inputs. The robustness can be

kv

represented by its Jacobian J = Af/Ax. There are
many ways to state an optimal condition for
robustness. One method is to minimize |w| where
w is the diagonal elements of W in the singular
value decomposition of ] = UWV™.

3.2. Examples of V-Automata

With automata, timed dynamic behaviors can be specified.
Here is a set of examples for specifying performance using
timed V-automata, as shown in Figure 1:

1. Let G be a constraint that the distance between
the robot and its desired position is less than some
constant value. Then Figure 1(a) specifies that the
robot will eventually arrive its desired position.

2. Let G be a constraint that the error of a learning
algorithm is less than a desired tolerance. Then
Figure 1(a) specifies that the learning will
eventually convergence. If let the state of =G in
Figure 1(a) as a timed state with time bound t, it
further specifies that the learning will be done
within time t.

3. Let G be a constraint that the distance between
the robot and obstacles is less than some constant
value. Then Figure 1(b) specifies that the robot
will never hit any obstacle. If G denotes that the
current memory usage is out of the limit, Figure
1(b) specifies that the memory usage at any time
is within its limit.

4. Let E be an external stimuli and F be a response.
Then Figure 1(c) specifies that there is a response
after stimuli within bounded time. Figure 1(d)
specifies that such a response is within 5 time
units.

Even though timed V-automata are powerful, still they
are not able to represent all forms of performance metrics.
For example, optimal performance over time min/f(t)dt is
not specifiable with timed V-automata. This form is mostly
used for characterizing energy, efficiency or overall errors.
Furthermore, specification with probability behaviors are
not included either. However, it is not hard to add
probability, for example, instead of “all runs” must be
accepting and satisfying time constraints, we can say “x%
runs” must be accepting and satisfying time constraints.

3.3 Performance Comparisons

Note that requirements specification defines what the
system should do, rather than defining how the system is
organized, i.e., its architecture. For example, behavior-
based control [4,6] (which is arbitration based or a
horizontal hierarchy) has a different form of architecture
from function-based control [5] (which is abstraction-
based or a vertical hierarchy); model-based systems have a
different form of architecture from learning-based systems,
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event-driven systems have a different kind of architecture
from time-driven systems. Different systems with different
architectures can still be compared based on the behavioral
interface under the formal performance specification. For
example, given a set of requirements specification Rs and
system A satisfies a subset As C Rs and system B satisfies
a subset Bs ¢ Rs. If As < Bs, system A is not better than
system B with respect to requirements Rs. Similarly, if
system A satisfies requirement o and system B satisfies
requirement 3 and if o implies B, system A is better than
system B with respect to the requirement.

However, this specification does not define metrics on
architectures. The measurement of performance should
come from the customer’s point of view, but the
measurement of architecture should come from the
developer’s point of view, i.e., design time, debug time,
upgrading time, modularity and the percentage of re-usable
components.

4. SYSTEM VERIFICATION

For most dynamic systems, stability or convergence is the
most important property that needs to be verified. For
example, we can verify that equation dx/dt = O satisfies the
property of V-automaton in Figure 1(a) with G as |x|<g for
any positive number €. The most commonly used method
for the verification of such properties is the use of
Liaponov functions. We developed a formal method based
on model-checking, that generalizes Liaponov functions
[13,17]. This method is automatic if the domain of interest
is finite discrete and time is discrete [13].

The details of the model-checking method are out of
the scope of this paper. The basic principle is to first find a
set of invariants, each associated with an automaton-state
in the timed V-automaton. Then, find a set of Liaponov
functions, which are non-increasing in stable states and
decreasing in bad states. Finally, find a set of local and
global timing functions, where local timing functions are
decreasing in timed states and global timing functions, like
Liaponov functions, are non-increasing in stable states and
decreasing in bad states, in addition to be bounded in
values.

5. RELATED WORK AND CONCLUSION

Much work has been done in formal approaches to system
specification and verification [1,2,7,8]. In general, there
are two schools. One is to develop a uniform specification
for both systems and their requirements; the other is to use
two different specifications, one for systems and one for
requirements. The advantage of the former is that the same
formal approach can apply to both system synthesis and
system verification. However, in most cases, if the
specification language is powerful for both systems and
requirements, the synthesis or verification tasks become

hard. We advocate the latter approach, i.e., using timed V-
automata for requirements specification and using
Constraint Nets [13,18,19] for system modeling. Control
synthesis [13,14] and verification [13,15,16,17,20] are also
studied in this framework.

In this paper, we have shown how to use formal
methods to specify the performance metrics of intelligent
systems, with timed V-automata as an example. The
advantage of formal methods over other methods lies in
their precision and generality. Timed V-automata, with its
graphical depiction and constraint specification, is a simple
yet powerful formalism for specifying many properties of
dynamic systems.
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Each scientific development that claims to provide a “new way” for approaching existing problems
needs proper (i.e. formal and quantifiable) evaluation methods and consensus-based criteria for
measuring the validity of its claims. Taken together, these methods and criteria constitute the metrics by
which new developments are being measured against their claims. Various claims have been made in
the literature for the technology of intelligent software agents. Such claims include a new approach to
programming providing a breakthrough comparable to the one achieved through object-oriented
methods; an approach to programming that is more readily understood by non-programmers; an
approach that lowers the costs of software inter-operability.

Software agents need proper metrics if the technology is to fulfill its promises and make a lasting
impact. One characteristic distinguishing software agents from software developed with object-oriented
and procedural methodologies is the anthropomorphic characteristics that agents exhibit. Various
taxonomies for software agents currently exist [1, 2, 3]. Agents typically present one or several of the
following characteristics:

Pro-activeness and goal-orientation

Reactiveness (reactive agents)

Autonomy (rational agents, and others)

Mobility (mobile agents)

Learning and reasoning ability (deliberative agents, and others)
Social ability: communication and cooperation (multi-agent systems)

e &6 o o o o

An agent is considered intelligent if it can learn from its environment and modify its behaviors and goals
to respond to environmental constraints that were uncertain and unforeseen at the time of development.
Agents are thus particularly adapted to model environments where software components act
autonomously on users’ behalf and problem-solving environments where parameters of computation
dynamically change during processing. The ability to learn for an agent is coupled with the ability to
perform resource and knowledge discovery. This action may take the form of querying and updating
knowledge-based systems. Knowledge discovery and interpretation bring latency to the agent and may
impair the achievement of its overall goals. For instance, reactive agents that need a quick response
time may not embody much learning and reasoning because the overhead renders the agent useless.
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Software agents present one or some capabilities that are affected by the choice of specific components
described in the Tools of Intelligence (see White paper). For instance, searching for a required object
within a scene is one area where software agents have successfully been implemented. If you take the
“scene” to be an information space like the Internet, information-gathering and retrieval agents display
this capability and have been successful at performing the task. Deliberative agents such as Belief-
Desire-Intention (BDI) agents exhibit the capability of remembering scenes and experiences as their
Beliefs are based on this capability. These agents are also able to interpret and respond to unforeseen

situations.

Agents’ ability to autonomously execute processes on remote systems, given the appropriate
permissions, is also a characteristic some intelligent systems (but not all) need to efficiently and
effectively perform. This requires proper measures. This characteristic, known as mobility, has very
different meaning for physical agents.

Mobility requires intelligence for software agents because true mobility requires resource discovery.

For those agents designed as mobile agents the degree of mobility can constitute a measure of its
intelligence. Mobile agents travel over networks such as the Internet and execute processes on remote
platforms. Mobile agents may start execute a process on a particular machine, be unexpectedly
interrupted, travel to another available platform, and continue the execution of the process from where it
was interrupted. Such a mobile agent needs intelligence to interrupt and restart its execution
autonomously without resetting, and for determining which resources to use in a networked
environment. Network agents used for telecommunication applications (such as testing the reliability of
a network) exemplify these types of agents.

Social intelligence needs to be measured in multi-agent systems. The degree of social interaction and
the agents’ ability to exhibit social behavior constitute an important criterion for multi-agent systems.
Not all agent-based systems need to exhibit this characteristic (mobile agents may never need to talk to
each other for instance). The type of social interaction between agents conditions knowledge
acquisition and interpretation. The social model affects the individual pursuit of goals and may
ultimately affect the survival of the system [4]. When one considers a multi-agent systems, there are at
least two models. Both types of multi-agent systems, collaborative and cooperative, display the
characteristics of open systems.

e Model 1: Each individual agent’s goal is subservient to an over-arching goal of the system. We have
a cooperative system, where agents agree not to pursue goals detrimental to each other and the
whole system, even if these “careless” goals are in accordance with the individual agent’s goal.

e Model 2: Each agent acts on its own behalf without recognizing a higher agent-entity with the ability
to regulate its goals (there is still a need for a kind of supervisor agent that regulates
communication). We have a collaborative system. This is the case for so-called rational agents,
used especially in e-commerce, where agents act in a market-like environment, with the ability to bid
for money on the goods and services each offers.

Agent-communication languages should theoretically let heterogeneous agents communicate, but none

currently do [5]. A significant part of the inter-operability issue is the lack of a shared content language
and ontology. An ontology expresses, for a particular domain, the set of terms, entities, objects, classes
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and the relationships between them with formal definitions and axioms that constraint the interpretation
of these terms [6]. These definitions and axioms are written in a variety of logical languages (e.g. KIF
[7]), and provide a formal theoretical basis to domain taxonomy. They can serve to automatically infer
translation engines between software applications. By making explicit the implicit definitions and
relations of classes, objects, and entities, ontologies also contribute to knowledge sharing and re-use
across systems. The use of ontologies in agent-based systems is proposed as a criterion for the metrics
of intelligent software agents. The degree of completeness and consistency of ontologies can be formally
proven and provide a quantifiable criterion.

Ontologies constitute an important criterion for the metrics of intelligent software agents, in particular
for agents exhibiting the social abilities of communication and cooperation. Software agents require the
use of or a translation to a shared terminology and syntax in order to efficiently and effectively inter-
operate. Agent-communication languages such as KQML meet the challenges of inter-operability with
mitigated success [8]. Agent communication languages specify the possible use of ontologies in their
syntax but do not require it. FIPA ACL proposes an ontology service as a normative specification [9].

In conclusion, software agents exist either as standalone or in social systems. Agents are made of
components, and an agent-oriented architecture typically includes the agent application as well as an
environment in which agents execute. They may execute on a single machine, on several machines
connected locally or by wide-area network. These agents need a degree of mobility. They may be
developed by different developers on different platforms, and therefore need a common communication
language including protocol and ontologies (see [10] for an assessment of the state-of-the-art in this
area). In addition, since agents may exhibit any combination of the characteristics above, some
taxonomies of agents prefer a classification based on the domains in which software agents have been
successfully implemented [11], rather than on their inherent characteristics.

Software agents also exist as whole, where an agent-based system is made of the agent and the
underlying environment. The environment may include the knowledge repositories and ontologies
which are key to the agents’ degree of intelligence. For this reason, the mind/body dichotomy, and the
proposition to measure the intelligence of the system based on the intelligence of the mind (controller),
do not hold for agent based systems.

In addition to characteristics applicable to Constructed Systems with Autonomy, the metrics of
intelligence for software agents need to include the following (not all these characteristics need apply for
the same system):

e be domain-specific

e measure the degree of mobility

e present an agent communication language

e refer to ontologies.
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ABSTRACT

The minimal representation size criterion provides a metric for the
configurational complexity of robotic tasks and may be used to
evaluate alternative algorithms, strategies, and architectures for the
accomplishment of specific tasks. The principles of explicit and
implict representation are used to define this complexity and the
resulting information measure derived may be considered as a
measure of configurational intelligence of the system.
Specifically, these measures indicate the internal explicit
information required to specify the accessible states of the robotic
system using its available perception and actuation capabilities.
The resulting approach may be used to evaluate and guide
applications tasks such as robotic assembly and multisensor

manipulation.

Keywords: minimal representation size, intelligent systems,
performance metrics, robotics

1. INTRODUCTION

Intelligent  robotic  systems couple computational
intelligence to the physical world and such systems may be
considered as intelligent agents that perceive the
environment, and select an action or sequence of actions to
affect the environment. Such an intelligent agent constructs
an internal “representation” of the environment, and uses
reasoning to choose among alternative actions.
Specifically, we can define robots as “active, artificial,
intelligent agents whose environment is the physical
world”. Such agents may be distinguished from software
agents, human agents, and others.

Such an intelligent robot is regarded as “rational” if the
agent makes decisions to choose actions that accomplish a
known task goal, or increase a performance measure of the
task. It is important to distinguish the presence of
intelligence from the metric of performance. Intelligence
(reasoning), in itself, does not maximize overall
performance. However, intelligence may be used to choose
among a set of candidate actions that may improve
performance or achieve a goal.

An intelligent robot may also be characterized by its
autonomy. In the context of these definitions, autonomy
refers to the capacity of the robot to define its own goals or
sub goals, often based on its perception and internal
representation of the environment. Autonomy widens the
scope of tasks, which the same system can perform without
reprogramming, but in general, requires more sophistication
in the design and architecture of the system. The non-
autonomous system may accomplish a smaller set of tasks
and may require efforts to constrain or redesign the
environment to conform to task assumptions.

The structure of an intelligent robot agent includes
perception, representation, reasoning, and representation.
The implementation of such an agent requires two major
components: (1) Algorithms that define the representation
structure and reasoning sequence, and (2) Architecture that
defines the organization of the system to accomplish set
goals and performance. In practice, the selection of the
architecture has been strongly intertwined with the nature of
the representation. For example, one simple intelligent
robot defines a perception-action pair such as “move hand
if you touch the hot stove!” Such a reflex action might be
expressed as a look-up table in which state representation is
a simple binary element.

As the complexity of robots and tasks increases, a single
reflex action is inadequate to create required behaviors, and
architectural approaches have tended to evolve in two
directions.  First, hierarchical architectures have been
based on the definition of a hierarchy of explicit
representation of the robot state. A hierarchy of perceptual
representation may involve image features, shapes, objects,
scenes, etc., while a hierarchy of actions may involve joint
motion, arm motion, robot motion, sensor-based motion etc.
The formal definition of such a hierarchical architecture [1]
has provided an important basis for building consistent,
predictable, and programmable robotic systems.

A second trend has been the development of behavioral
architectures [3] that expand upon simple reflexes by
creating a network of interdependent reflexes in order to
increase the sophistication of the behaviors. One such
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behavioral approach is the subsumption architecture [5] that
utilizes finite state machines to impose a priority setting
logic on the reflex actions. The nature of such behavioral
architectures is to incorporate an implicit representation of
the environment in order to define a simplified state space
of perceptions and actions. From a systems perspective, the
behavioral architecture utilizes constraints or assumptions
about the environment to identify a subspace (manifold)
within the explicit state space. A reflex action, or set of
actions, may then be defined within the subspace with the
logical consistency to achieve goals and performance
metrics.

The distinction between explicit and implicit representations
is important to the interpretation of intelligence in systems.
A simple task example helps to illustrate these distinctions.

Consider a room with a single door containing a mobile

robot. The robot task goal is to exit the room, and it may

have a performance metric of minimum time to exit.

Several different types of algorithms may be considered:

(1). Random search (Figure 1a)

The robot moves in random directions without using
perception, mechanically bouncing off the walls.
Eventually, it is guaranteed to exit the room.
(2). Wall following — simple reflex (Figure 1b)
The robot uses a simple sensor to detect presence or
absence of an adjacent wall. The algorithm:
IF (‘wall-is-in-front’) THEN (‘Turn-Right’) ELSE
(‘Follow-wall-on-left”)
is guaranteed to find the door, though the path may be
long.

(3). Perception - Explicit state representation (Figure 1¢)
The robot uses a sophisticated vision sensor to view the
door, acquire a perception, P, update the global internal
state representation, GS, and plan an explicit path to
the door.

(4). Perception — Implicit state representation (Figure 1d)
The robot defines an implicit mapping of GS to local
state, LS, that is consistent with the desired goal state.
By mapping perception into LS, rather the GS, the
resulting algorithm is often more efficient and simpler
to implement. In this case, consider a sensor that
perceives only the width, W, of the door, but no other
attributes of the environment. We choose W to be the
local state representation, LS = W, and define a local
reflex algorithm to choose an action, A:

Choose A to increase W.
(a). Ifrobot, R, moves toward the door, W> > W.
(b). If R moves perpendicular to the door, then W’>W.

The resulting local changes in W move the robot toward
and through the door, achieving the global goal. However,
LS is never sufficient to explicitly locate the robot in the
room, i.e. determine GS. This strategy is analogous to a
potential field mapping related to the perceived door width
feature of the room. The same strategy may be used as a

feature-based method to guide a peg-in-hole or other
assembly problem using visual servoing of the area of the
target hole [26].

These examples illustrate several types of tradeoffs in the
design of intelligent systems, and also confirm that the most
intelligent system may not result in the optimal
performance on a given task, as illustrated in the
performance of the feature-based example. First, for this
purely geometric task, we can define one component of the
intelligence of the system, the configurational complexity as
the information required to represent the accessible states
of the internal representation of the system. “Accessible
states” are defined as those states that may be achieved as
goal states of the system through its perception-action
algorithms. In this sense, the representational intelligence
of the system is equated to the size of the internal
representation space.

For the examples in Figure (1), the configurational
complexity is found to be: (a). 1 bit, (b). 3 bits, (c). 30
bits, and (d). 10 bits, where a resolution of 10 bits has been
assumed for the vision sensor used in (c¢) and (d). By
considering the approximate number of steps required to
achieve the result, on can similarly compute the cumulative
complexity for each of the tasks to be: (a). 100 bits, (b).
75 bits, (c). 60 bits, and (d). 20 bits. Therefore, the
minimal complexity approach to the task is given by
strategy (c) and may be regarded as a tradeoff between
explicit and implicit information needed for the task.

In addition, the time (number of steps) required for each
task is implicit in the cumulative information and reflects
the inherent deficiencies in the worst case scenarios for (a)
and (b). Based on the viewpoint of encoded residuals
discussed in the next section, one can also calculate the
encoded implicit information for each strategy: (a). 20 bits,
(b). 18 bits, (c). 0 bits, (d). 12 bits.

Figures (e) and (f) emphasize the inherent assumptions that
are often present in such systems. Strategies (a) and (b) are
not guaranteed to succeed for problems (e) and (f), where
the subspace manifold defined by the strategy is no longer
guaranteed to contain the goal. Strategies (c¢) and (d) may
still succeed but require more steps and a more
sophisticated algorithm.
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Figure (1). Examples of alternative strategies for the task of exiting a room through the door: (a). Random search, (b).
Wall-following, (c). Explicit representation and global planning, (d). Implicit representation and local reasoning. All four
strategies will accomplish the basic task. However, (a) and (b) are not general and will fail when the environment differs
from the basic assumptions, such as in (¢) with inner walls, and in (f) with multiple doorways.
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2. MINIMAL REPRESENTATION SIZE

The minimal representation size (MRS) methods
[6,18,19,23,24] used in this work are also called “minimum
description length” methods in the literature. The MRS
approach introduces an information measure of model
complexity and has been applied to a number of related
problems in attributed image matching [22], shape
matching [11], density estimation [4], and model based
sensor fusion [11-17]. The minimal representation criterion
defines the minimal overall data representation among a
choice of alternative models and trades off between the size
of the model (e.g. number of parameters) and the
representation size of the encoded residuals. Intuitively, the
smaller, less complex, representation is chosen as the
preferred model for a given performance criterion. In terms
of the robotic systems we consider here, the representation
size combining state and model information serves as a
measure of system intelligence, and the MRS criterion will
select the minimal complexity system for a given task
performance. In practice, the MRS criterion has advantages
in the attainment of consistent metrics without the
introduction of problem specific heuristics or arbitrary
weighting factors. The MRS family of methods provides a
type of “universal yardstick” for data and models from
disparate sources, and therefore has been successfully used
in multisensor fusion interpretation problems.

The MRS criterion has been proposed as a general criterion
for model inference by Rissanen [19] and by Segen and
Sanderson [23]. It is an expression of the ideas on
algorithmic information theory pioneered by Solomonoff
[24], Kolmogorov [18], and Chaitin [6]. The MRS
approach is based on the principle of building the shortest
length program that reconstructs observed data. The length
of this program or representation size depends on both the
statistics of the sensors and on the systems “knowledge” of
the environment, specified by a set of models and
constraints.

More formally, the representation size is the length of a
program in bits that, when executed on a deterministic
Universal Turing Machine (UTM) [7] would reproduce the
observed data on the output tape. A model based encoding
scheme is used in which the data is thought to be arising
from one of the several available models in a model library,
Q. The models may differ in structure and number of
parameters. The observed data D is encoded by specifying
an instantiated model q and the deviations or residuals of
the data D from the selected model q €Q. The resulting
representation size is

L{q.DQ] = L[q|Q] + L[DJq.Q]

= L[q|Q] + L[A]q.Q] + L[D|Q,q,Q]

where L[q,D] is the total representation size of data D when
explained using model ¢, given a model library Q.
L[d|A,q,Q] is the number of bits needed to encode the data
deviations or residuals from the model, given a coding
algorithm, A. L[A]q,Q] is the number of bits required to
specify the coding algorithm itself, given an environment
model. L[q|Q] is the number of bits required to encode the
environment model (structure and parameters) given a
model library, Q.

According to the minimal representation principle, the best
explanation of the observed data is the one with the smallest
representation size

Qopt =arg mingey L[q|Q] + L[A|q,Q] + L[D|A,q,Q].

This approach finds the simplest explanation of the data
that is most likely, and objectively trades off between
model size, algorithm complexity, and observation errors.
Rissanen [19] showed that a finite set of random samples
from a class of probability distributions would be
complexity bounds as defined by Kolmogorov [18] and
others [6,24], and the representation size can be used to
choose among alternative distribution models. Barron and
Cover [4] showed that such a minimal representation size
probability distribution is statistically accurate and the rate
of convergence is comparable to other methods of
parametric and nonparametric estimation. In our previous
work [13-17], we have structured the model-based pose
estimation problem such that the pose transformation
parameters are isolated elements of the statistical model,
and may be estimated by the minimal representation
criterion.

3. PARTS ENTROPY AND INFORMATION
MEASURES FOR ASSEMBLY

Geometric task complexity is directly related to the
geometric state space and the precision of state definition or
partitioning. In earlier work [20], we have defined the parts
entropy as a measure of configuration uncertainty in
mechanical systems with particular application to assembly
analysis and assembly planning. In this formulation, the
entropy of a distribution of independent objects, or parts, is
given by

Hyo=H, (P, ...,P,)=-Z P, log, Py .

where uncertainty in position and orientation is described
by the joint probability distribution P(x,y,z,0.,8,%) over the
joint ensemble. As an entropy measure [7], H may also be
interpreted as the information required to specify the
position of the objects in their geometric configuration
space.
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The part entropy of an object is defined with respect to the
mechanically distinguishable positions and orientations, and
the resolution, d, in each coordinate degree of freedom.
The symmetry of an object therefore strongly affects the
resulting orientational entropy and is defined by the set of
group operations that leave the object invariant. For
example, a sphere has 0 bits of orientational entropy, while
a cube with 10 bits of resolution would have 24 bits of
entropy.

The part entropy may be used as a basis for the
configurational representation size, and is directly related to
the set of constraints or other geometric assumptions made
on the environment. For example, a flat surface reduces the
entropy of parts that sit on it. The entropy of a cube sitting
on a table (with 10 bits of resolution) is 28 bits, while a
general rectangular solid will be 30.1 bits, and a cylinder
may vary from 20 to 30 bits depending on its proportions.

For an assembly task, we consider a set of parts {Q;}, I =
1,...,N, such that the part relationships are defined by join
probabilities P[Q; Q], and the parts entropy is defined as
the joint entropy H[Q; Qn]. If the parts are positioned
independently, for example, prior to assembly, then the
probabilities will be independent:

P[Q1 Qn]=P(Q) P(Q2)...P(Qn),

and

H[Q: Qn] = Z H(Q).

As the assembly task proceeds, individual parts entropies
decrease as parts are positioned, and the entropy of the
ensemble decreases as part dependence is increased during
mating operations. In this sense, an overall goal of the
assembly task is to reduce the joint entropy of the ensemble
of parts. If we define the entropy of the final rigid
assembly to a reference frame with Hg = 0, then the relative
entropy of parts and subassemblies may be tracked as a
function of time and the entropy flow of the process
described in terms of bits per second, that is, information
flow. Alternative systems choices and parts designs may be
compared in terms of the entropy flow and used to guide
decisions on assembly system design. An example
described in [20] tracks the parts entropy sequence for
sequential assembly for three different electronics assembly
strategies. Similar concepts of part probability distributions
may be linked to tolerance specifications of assemblies, and
have been used to evaluate assemblability based on
maximum likelihood methods [21], and used to guide
assembly planning tasks [8-10].

4. MULTISENSOR FUSION MANIPULATION
EXAMPLE

Figure (2). Five fingered anthropomorphic robot hand
manipulating an object. The camera observes motions and
minimal representation metrics are used to determine object
configuration [16].

The MRS approach has been applied to the problem of
multisensor fusion for pose identification of objects using in
manipulation by a robot hand. The setting of the task is
shown in Figure (2). A five-fingered Anthrobot-3 [2] hand
is mounted on a six degree-of-freedom (DOF) articulate
PUMA-760 robot arm. The hand is provided with finger tip
tactile sensors that sense planar surface contact with the
grasped object. The hand is in the field of view of a
calibrated camera with edge detection algorithms. A
polyhedral object is grasped by the hand and manipulated
within the camera view.

In this task scenario, the minimal representation criterion is
used to integrate the perception and manipulation steps
through the use of consistent information-based criterion
for consistency of interpretation of the manipulation with
the viewed object pose from the camera. In this task, both
the camera information and the tactile sensing data is
extremely noisy and uncertain.

The minimal representation formulation of this problem is
described in detail in [16]. In this approach, the model-
based representation of the hand-eye coordination is
described by a set of general constraint equations

h(y;z) =0

where Y is a set of model features, and Z is a set of
observed data features. In general, such constraints may
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themselves depend on other model features. Often
observed data features may not be related to actual events
and identified as unmodeled data features.

The association between the observed data features and the
model features is defined by a correspondence w, and this
correspondence is a part of the identified model. In
addition, a model of the feature extractor, F, for vision and
tactile sensing is used to described the process. Application
of the MRS approach defines a representation size for each
candidate model and set of observations subject to the data
constraint manifold, DCM, defined by h(y;z). The
representation size of the model and encoded residuals is
minimized within the measurement subspace locally
orthogonal to the DCM.

In general, the search over many candidate models and
correspondences is difficult and does not lend itself to
linear continuous search techniques. In [16] we use a
differential evolutionary algorithm [25] to carry out this
search and identify viable interpretations as minimal
representation size interpretations of manipulation and
sensing states of the system. Figure (3) shows an example
of the evolution of the configuration states of the system as
the differential evolutionary algorithm proceeds. The
system converges to a well-defined and consistent
interpretation of the current state (figure (4)).

5. DISCUSSION

The minimal representation size criterion provides a metric
for the configurational complexity of robotic tasks and may
be used to evaluate alternative algorithms, strategies, and
architectures for the accomplishment of specific tasks. The
principles of explicit and implict representation are used to
define this complexity and the resulting information
measures derived may be considered as a measure of
configurational intelligence of the system. Specifically,
these measures indicate the internal explicit information
required to specify the accessible states of the robotic
systems using its available perception and actuation
capabilities. The resulting approach may be used to
evaluate and guide applications tasks such as robotic
assembly and multisensor manipulation.

As discussed here, the characterization of tasks is defined
with respect to geometric configurations. An important
extension of this work is to consider the application of such
a formulation to a more general task space involving, for
example, force and dynamics of the system requirements.
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Figure (3). Differential evolution algorithm utilizes
representation size metric to search for consistent
interpretations of object pose in the hand of manipulator.
The minimal representation size pose requires the minimum
information to represent.
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Figure (4). Final minimal representation pose of the object
determined by the differential evolution search.

A second extension of this work is the consideration of
intelligent robotic systems with adaptation and learning
capabilities. As shown in the multisensor fusion
manipulation example, the representation size may be used
as a criterion for evolutionary learning of configuration
interpretations. In general, this approach might be used to
guide learning of algorithmic structure and strategies
leading to more sophisticated behaviors.
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ABSTRACT

In many real world applications, system Autonomy is the

most single significant and meaningful attribute of
Intelligent Autonomous Systems - /4S. This paper presents
performance metrics for 74S, which are related to
Autonomy. Metrics are presented and defined. These metrics
are currently being used in on-going research, development

and engineering work.
1. INTRODUCTION

From an engineering point of view, performance metrics for
IAS are needed for establishing and developing the
following system level processes: a) a sub-process within
the multi-phase system engineering process, e.g., system
requirements analysis; b) preliminary and detailed design
process; ¢) Concept-of- Operation development process; d)

comparative evaluation of alternative designs.

A fundamental question which is related to /A4S performance
metrics is: Which entity is more meaningful and practical
to define and to measure with respect to /4S performance —
Autonomy or Intelligence? Our position is that from the user
point of view, as well as from the system architect and
designer point of view, Autonomy is the premier
characteristic attribute of an 4S. Although Intelligence

enables Autonomy, it is not considered by us as either an

appropriate or a practical system design objective or a

system performance requirement per se.

The concept of Autonomy is probably more meaningful,
more communicatable, and more precisely measureable, and
it is easier to come to a consensus about what Autonomy or
what an Autonomous System is all about, rather than what is

Intelligence or what is an Intelligent System.

2. AUTONOMY

Currently, two distinguished approaches to define system
autonomy are used by researchers and groups within the
intelligent autonomous systems (including autonomous
agents) community. The first approach defines autonomy as
an entity which is assigned to the subject system or to the
subject agent by a higher level authority, e.g., a supervisor
agent. Within the context of this approach, autonomy is
defined with respect to the assigned responsibility of a
system or an agent. Within this context, autonomy reflects
the agent's decision-making capability and authority, and
the degree of self control the agent has over its own
decisions, see [1]. This approach is more commonly used
within the autonomous agents community. The other
approach defines system or agent autonomy with respect to
its self capability to accomplish its assigned mission goals
while operating under uncertain dynamic environment,
uncertain dynamic scenario and self faulty situations, and
without or with very little human or external agent

intervention, [2], [3]. We are using the later approach.

Definition: Autonomy is an attribute of a system which
characterized its ability to accomplish the system's assigned
mission goals without any or with only minimal external
intervention, while operating under constraints and under

uncertain dynamic environment and scenario conditions.
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3. CRITERIA FOR METRICS

In the sequel, some guidelines for metrics selection are

proposed.
3.1 Scope

The proposed metrics should reflect system autonomy as
perceived by an external observer. Therefore, the autonomy
should be measured outside the system boundary, i.e., in the
interface of the system with external entities. Figure 1, in
the sequel, illustrates the context of Autonomy Evaluation,
as perceived by an external observer. Four entities are
identified within the relevant context, namely: a) a Remote
user or supervisor; b) an External Agent; c¢) Environment &
Scenario; d) System Under Evaluation (SUE), which is the

Autonomous Intelligent System to be evaluated.
3.2 Autonomy Relevance

Meaningful, effective, and measurable metrics for system
autonomy should reflect the influence of the following

factors as related to system autonomy:

e Level of Abstraction of the commands and the data
provided to the autonomous system by the remote

user/ supervisor or by an external agent.

e Information bandwidth between a remote user/
supervisor or an external agent, and the system under

evaluation.

e The levels of complexity, dynamics and uncertainty
which are attributes to the environment under which

the system is operating and executing its mission.

e The levels of complexity, dynamics and uncertainty
which are attributes to the system operating scenario

while executing its mission.

33 Generality

Although the meaning of performance metrics is usually
domain and application specific, more general entities, such
as the principle of entropy can be used within the
framework of /4S performance evaluation In our work,
entropy is used as a general measure of entity uncertainty,
and is applied to measure various parameters. Using entropy
as a general tool for representing uncertainty in the domain
of control and system engineering was proposed by Saridis

[4].
3.4 Structure Independence

The metrics for Autonomy should be independent of the
internal structure, e.g. : a) number of levels of the hierarchy;
b) the decomposition of /4S internal processes to resolution
scales; c) the computational paradigms, e.g. fuzzy vs. neural
networks, and d) other internal specific features. The
attempt to establish metrics which takes into account
internal specifics of the system will lead to an endless
confusing and wunpractical effort, and to unstable
solution-depended metrics. System Autonomy is a system
attribute as perceived by an external observer. In analogy,
consider a consumer which want to buy a new car. His
decision will not de