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AWract-llis work is a computer simulation of tbc controlof a &xibk robot ann.The dynnmic equations
for a singk-link flexible robot a m have ban derived rigorously. This arm has two dcgrex- of freedom
in rotation and one in translation so that the workspace is three-dimensional.The payload is simulated
by attaching additional mass to the arm at a specified location. The governing equations of the plant and
the measurements a n nonlinear. The proass of control is divided into two stages: coarse control and fine
control. Based on the optimal control theory, a linear observer is constructed for tine control. The
numerical results arc prrsentcd here.

~ O D U C I I O N

Most of today’s industrial robots can lift only about
one-twentieth of their own weight. Compare that
to the human arm which can lift about ten times its
own weight. The top slew velocity of a robot arm is
typically around 40 inches per second while the top
slew velocity that can be achieved by the human arm
during a task such as throwing a baseball i s around
1500 inches per second. Although these comparisons
may not be fair, the point stands that there i s vast
room for improvement in the performance of robotic
manipulators. One of the most elementary problems in
robotics i s that of accuracy. The reptatability of most
o f today’s robots is of the order of 1 mm over the
working space, the accuracy of absolute positioning
(for the end effector to reach the commanded point)
may be off as much as 1 an. The present solution to
t h e problem of accuracy is to make robot structures
very stiff and rigid. Another problem in robotics
is control. Nowadays, in order to position the end
effector to the commanded location the angles that
each of the robot’s joints must assume are computed
and then the joints are driven simultaneously to said
angles. After the joint angles assume those computed
values, the robot i s presumed st i f f enough so that the
end effector will thus (by dead reckoning) be in the
intended location. Therefore, not only are the robots
built to be massive and unwieldy, the analysis and the
controls in robotics are based on the assumption that
the robot arm is just a collection of rigid bodies.

It is desirable to build a lightweight robot arm
which has a long reach and the capability to carry a
heavy payload and to move rapidly. In order to meet
these requirements, the robot arm has to be flexible.
In other words, even the static debtion of the robot
arm has to be taken into account for positioning
accuracy; more importantly, the high moving speed
of the arm implies the inertia forces acting on the
arm are very large and the stability of the robot
arm becomes a critical problem which requires the
engineers to design a more sophisticated control

system. In the area of control of flexible robot arms,
Cannon and Schmitz [l]published the pioneer work
in 1984. In that work the mathematical modeling and
the initial experiments have been carried out to
address the control of a flexible member (one link of
a robot system) where the position of the end effector
(tip) is controlled by measuring that position and
using the measurement as a basis for applying control
torque to the other end of the kxible member (joint).
Also, it is worthwhile mentioning the works of
Harashima and Ueshiba [2], Wang and Vidyasagar
[3,4], Sangveraphunsiri [5] and Book et ol. [6]. In all
the above-mentioned works, two things are common:
the one-link robot arm, with its hub rotating about
the z-axis, sweeps the horizontal x-y plane; the
flexible a m is modeled as a beam whose deflection is
represented by a series in te rms of eigenfunctions
(normal modes).

In this work, the computer simulation of the con-
trol of a single-link flexible robot arm is presented.
The hub of the arm can rotate about the z-axis, speci-
fied by the joint angle O(r), and the y’-axis, specified
by the joint angle 4(r). Also, the a m can slide along
its own longitudinal axis, so that the working region
of the end dfector is a threedimensional space
instead of a circk on the horizontal plane. The flex-
ible arm is divided into a number of beam elements
and then tteated by finite element method to obtain
t h e governing equations for the mechanical system.
By doing so, it i s more &xible and natural to
incorporate payloads into the system. Moreover, it
will be seen later that the system (plant), including the
measurcment of the tip position, i s nonlinear and
there is no attempt being made to linearize that.

P R O W D O N

The single-link robot arm being considered in this
work is shown in Fig. 1. The arm consists of two
parts: the hub, which is modeled as a rigid body, and
the &xiMe beam, which is further divided into n

459



460

I
Y

Top Vlew
Front View

Fig. 1. Singlelink robot arm in its home codgumtion.

beam elements. The flexible beam is in the shape of
a slim hollow cylinder with length I,outer radius r,
and inner radius ri. A rectangular coordinate system
(x, y, z), in which the z-axis is opposite to the
direction of gravity, is employed in this work. The
configuration, in which the axis of the hub as well as
the axis of the beam initsundeformed state is parallel
to the x-axis, is named the home configuration. The
differences in position between the deformed state
and the undefonned state of the beam in the home
configuration are the displacements (Vy, V,) referring
to the home configuration as indicated in the figure.
Not only can the flexible beam deform, the hub can
rotate about the z-axis and the y'-axis, which i s
perpendicular to the axis of the hub and the z-axis,
and can also slide along its own axis. The rotations
of t h e arm about the z-axis and the y'-axis arc speci-
fied by two timediependent variables, 8(t) and 4(I1,
respectively. However, in t h i s work, the sliding of the
arm i s specified by a constant brameter, d, which is
determined by the given target position, as being
discussed later. Since the flexible beam is modeled
as n beam elements, it has n + 1 nodal points. The
generic ith nodal point (i= 0, 1, 2,. . .,n) is associ -
ated with the lumped mass, mi, and referring to the
home configuration, the coordinates [X, +d, U,,(i),
Uz(i)].The payload is simulated by the mass attached
to the end point (the nth nodal point), ma, as indi-
cated in the figure. The computer software developed
at NBS allows the payload to be carried at all nodal
points, hence, from now on unless otherwise stated,
the lumped mass, m,, stands for the sum of the
payload carried at the ith nodal point and the mass
of the beam distributed to that nodal point.

The rotation of the hub about the z-axis and the
y'-axis transforms the arm from its home configur -
ation to itsactual configuration, as shown in Fig. 2.
The transformation may be expressed by the follow-
ing equation

Qx. (2)

I t is noticed that Q is an orthogonal transformation
matrix which has the following properties

Q-' =Qr,

&t(Q)= 1. (3)

In other words, any vector V+, in the actual configur -
ation, can be transformed into V, the corresponding
vector in the home configuration, through V = QrV*.

Now the velocity and the acceleration, v* and a+,
can be obtained as

dx*
dt

o.r-=&4++,

z
t

xThe position vector of any point on the beam,
when it is in the home configuration, can be expressed Fig. 2. singialinlr robot arm in itsactual configuration.



= Qx + 2*+ Q8.
where
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However. compondingly -, the inertia force obtained
by Cannon and Schmitz [I],Harashima and Ueshiba

(5) [2] and Wang and Vidyasagar [3,4] may be written as

ry = -m (0, +&X + d)};

in other words, the nonlinear tern md2Uy has been
(6) omitted. T h i s example indicates that the expressions

of the inertia force and gravity obtained in this work
contain no approximation and are more general than
those obtained in [HI.

(7)

The generic ithbeam ekment conne!cts the(i-1)th
nodal point and the ith nodal point, as shown in

INERTIA FORCE AND GRAVITY

where m is the effective mass lumped at that nodal where the local stiffness matrix of the ith element i s
point; and g, the constant o f gravity, i s equal to expressed as
32.2ft/sec 2. The corresponding force in the home
configuration, f, can be obtained as

[
-12 61,

61, ]61, -61, 21: 41;

(14)
El -12 12 -61, -61, .
1: -61, 41: 21; '

K'=-

where

P Qro

E i s the Young's modulus; I, X, - X,- ,;Iis the
moment of inertia; for the ith nodal point, U, i s

(9) the displacement UJU,), S,= dU,/dX is the slope,
is the acting force h(A), Mi is the moment about

the z- (y-) axis.
The global stiffness matrix of the beam is the

assembly of all the local stiffness matrices. T h e
boundary condition of a cantilever beam i s that
the displacement and the slope are zero at the fixed
end. After th i s boundary condition is imposed, the
governing equations for the beam may be expressed

R = 2QTQ

For example, when 4 =n/2 and 4 = 4 =0, the
following is obtained

11
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Fig. 3. The generic ithbeam element.
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= . the angular velocities, 8 and d, as the state variables E

of the system. Consider the angular accelerations, 8'
and 6, or the torques, To and T,, as control variables
of the system. The purpose of the control is to find
the control laws that make the system converge to a
steady state which meets certain prescribed require-
ments. If the solutions arc converging, then, as time
approaches infinity, the time derivatives of all the
variables approach zero, and

K,U +&S = f,

&U+ K,S =M,

where

u=(UI, u2,.. . uny,

According to cqn (20), it i s seen thatM=(MI,M2,...Ma)?

e=0,Since there is no moment acting on the beam, i.e.
M = 0, eqn (16) implies that

m - ' K q = -g sinI$'.
S -KZ'KcU.

In order for the end effector to reach the given target
position (x',y',z'), eqn (2) becomesSubstituting eqn (17) into cqn (IS),the following i s

obtained

KU = f,

where the stiffness matrix, K, can be calculated as

In view of eqn (9), eqn (1 8) can be rewritten as

+ rn-IKU =F, (20)

which can be rewritten as

(I+ d)' + A' = (x!)' + (y')' + (2')' = (r')2, (28)where m is the mass matrix, i.e. m= diag.
(mi, m2.. . .m"); F i s the vector of forcing terms. I f U,
stands for the displacement Uy(Uz) at the ithnodal
point, then F, stands for the forcing term Fy(Fz)and

Fy(i) = -(sin 40+ 2 cos $48) (xi+ d)

+ O2Uy(i)- (- cos 48'+ 2 sin 448)
x Uz(i)+2cos4BLi,(i), (21)

F,(i)= -(-i+sin4cos48 2)(Xi+d)

- c o s40Uy(i) + (cos 24B2 + d2)
x Uz(i)- 2 cos +Bir,(i) -g sin 4. (2)

c o s fl(1 + d) + sin @A = P',

where 1i s the length of the flexible beam, A U<(n)
is the displacement of the end effector. From eqns
(25, 28,29), U{, #, and d can be determined.

ToRQUEs

The torque about the z-axis, To, and the torque
about the y'-axis, T,, can be evaluated as

It is noticed that, if 8 and 4 arc given as functions of
time, eqn (20) can be readily solved by invoking the
Runge-Kuttamethod or other appropriate numerical
methods. However, as it willbe seen later, e,&&, and
4 are regarded as state variables and the governing
equations for the &xible robot arm as a control
problem will be formulated in the next sections.

TARGET

Consider the displacements, Uy(i) and Uz(i), the
velocities. 0.,Ci)and 0.Ci). the ioint andes. 8 and b. +mhg(Lh/2- d)sin 4,
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where Ih, m, and 4. arc the moment of inertia, the comingpaper, the torques, which include the effect of
mass, and the length of the hub, respectively; (x*, y*. deformation, will k taken as the control variables.
z*) arc the coordinates of the nodal point, which can
be calculated by eqn (2); (fl,fl,fl) arc the forces
acting on that nodal point, which can be calculated
by eqn (8).

It is noticed that eqns (30) and (31) a n very
complicated since the effect of deformation on the
torque i s incorporated in the formulation. If the effect
of deformation on the torques is neglected, then To
and T, are reduced to

Tor TI, = (sin2 40+ 2 sin 4 c o s 444)

r .

T, r T; = (4- sin 4 cos 4d2) m,(X, + d)'
L o

where
(32)

(33)

Then the governing equations of the system can be
written as

AT,=lim (T,-T6)=
I-x

which i s a measure of the effect of deformation on the
torque in the static case.

If it i s feasible to consider 8' and 4 as control
variables, then it i s straightforward, as it will be seen
later, to formulate the control laws; moreover, the
torques, To and T,, can be calculated according to
eqns (30) and (31), taking the effect of deformation
into consideration. On the other hand, if torques are
taken as the control variables and one is willing to
make an approximation, i.e. to neglect the effect of
deformation on the torques, then eqns (32) and (33)
can be expressed as

(37)

4= 4 % +B2u2 +M a l 7%, ul, u2lr
For converging solutions, it is seen that, as time
approaches infinity, TB and Ti approach zero, and where

where a stands for all the state variables. Now, eqns
(35) and (36) and eqn (20) form a complete set of
governing equations for the control system. However,
i t is felt that the effect of deformation on the torques
should be considered in the treatment for the sake of
consistency. In th is work, the angular accelerations
are taken as the control variables and in the forth-
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u, =e;

63.
and the nonvanishing components of the two
(2n + 2) x(2n + 2) matrices, A, and A,, are

["
66.

(A,),= (A2)#= (-m-lK),,

l d j g n , n + 2 < i < 2 n + l

(A&= - gas&', j = n + l ,

n+2<i<2n +l.

From eqns (40) and (41) it i s seen that the angular
accelerations, 8' and 4, are taken as the control
variables; also, all the nonlinear terms are contained
in the functions N, and N, which have the following
property

I t is seen that 6 is a nonlinear function of the state
variables. I f a Taylor series expansion of 6 is per-
formed about the final position, (0 t @, t$ = t$',
U,=O, Uz=U{) the linear expressions of b is
obtained as

6, UiliJ'

62 % U,,(n) +[sinv(I+d)- cos t$'U{(n)] 0; (62)

From now on, the governing equations of the system,
eqns (40) and (41), may be written symbolically as

d = Aa + Bu +N(a,, a2, u,, u,). (54)
6, OJn) + [sin &/(/ + d)-cos &' U{(n)]d, (65)

6, z O,(n) -(I+ d) (6.THE MEASUREMEN'IS

I t is assumed that the position and the velocity of
the end effector, (x:, y:, 2:) and (v:, v;, v:), can be
measured. Recall eqns (2,4) and eqn (26) as follows:

Now the governing equations and the measurements
of the system in linear form can be symbolically
mitten as

a=Aa+Bu,

6 =Ha,

where A, B, H are constant matrices, based on which
the estimator will be constructed.

THE CONTROL

In order to construct a controller and an observer
based on the optimal control theory, first, let the
equations of the system (plant) and the measurements
be written asThen the difference between the position of the end

effector and the target position can be obtained as
d = Aa +Bo+ N+ v,

y = b(a) + w z Ha + w,(57)

where v is the state excitation (white) noise vector; IV

i s the measurement (white) noise vector. Also, let theDefine a vector, 6, as follows:



performance criterion be e x p d as

I= [aZ(r)R1e(r) +mr(r)R2e(r)] dr, (71)

where R, and R, arecalled the state weighting matrix
and control weighting matrix, rcspcctively.

It i s assumed that all the noiscs considered in t h i s
work are uncorrelated and the variance m a t r i c e s
defined as

V E uv(r) vf(r)],

W E E[n(r) nZ(r)],

are constants in time.

represented by
Now, let the observer and the control law be

o = -a,

(74)

where C and L arecalledthe control gain matrix and
estimate gain matrix, respectively; d, the estimates of
a, are the state variables of the estimator (observer);
and, with the s y m b o l " - *' on top of A, B and H, i t
is emphasized that the number of beam elements, ri,
for constructing the estimator may be different from
(far less than) that for simulating the system.

Following the derivations by Kwakernaak and
Sivan [IO],or by Friedland [II],the control gain and
the estimate gain can be computed as follows. First,
define matrices Y and Z as

(77)

Let the matrix p and the matrix q be composed of the
eigenvectors of Y and Z, respectively. i.e. the ith
column vector of p(q) is the eigenvector of Y(Z)
corresponding to the ith eigenvalue of Y(Z). Let p
and q be partitioned as

where p+(q+) and p-(p-) arc eigenvectors corre-
sponding to eigenvalues with positive real part and
negative realpart,respectively. Now, the control gain
matrix and the estimate gain matrix can be written as

L= PR'W-',

where

If there had bcen no noniinear function, N, in eqn
(69) and no difFerence between b(a) and Ha in eqn
(70), then the properly obtained gain matrices, C and
L, would have guaranteed the convergency and the
stability of the solutions; in other words, the end
elfcctor eventually would have reached the target
position asymptotically. Now, on the contrary, it i s
noticed that N approaches zero and 6 approaches Ha
only if (e, 4, U,, U,) approach (Of, @,0, q).
Therefore, eqns (74) and (75) may be referred asjine
control; eqn (75) is then named the fine control law.
As coarse conrrol is concerned, which is the first -stage
control, eqns (74) and (75) are replaced by

where the last two equations may be named the
coarse control laws; c,, c,, d, and d2 are positive
constants; the nonlinear function in eqn (84) may
be omitted. One shifts from coarse control to fine
control at t ime r, as soon as the following condition
is met

where 8' and 4' arc input parameters set by the
designer of the control system. In this work,
8' = t$

e = 5'. cI = c, = 0.S/sec2, dl= d2 = O.Z/sec. T h e
block diagrams of the system and the estimator for
coarse control and h e control are shown in Figs 4
and 5, respectively.

C= R, 'B'A,

C.A.S. 29jG-H
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I"

Control Law
u= - cs Y I

Fig. 5. T h e block diagram of fine control.

NUMERICAL ltESULTS

In t h i s section, for illustrative purposes, the
numerical results of two cases are presented. In the
following, the input parameters are set to be

(a) material: aluminum

E=IO' psi, p = 0.2536 x lb/in.3,

(b) geometry of the flexible arm

r, = 2 in., r,= 1.9 in.,

(c) payload

mo= 40 Ibf,

(d) target position

e' = 41= 450,

(e) initial joint angles

e(o) = 00, 4(0)= 900,

(f) number of beam elements

n = 8 (plant)

ti = 4 (observer),

(g) controller/observer

W = diag. [0.01, 0.01, 0.01, 0.1, 0.1, 0.11

(1) for a = a,, [qn (3711

R, = diag. [1100, 4400,9900,

17600, 22*1@, 1.1, 4.4, 9.9, 17.6, 1100]

R2~400

V-diag. [0.005, 0.01, 0.015, 0.02,

0.0005, 0.5, 1.0, 1.5, 2.0, 0.0005]

(2) for a -q, [eqn (3811

R, =dag. [W, 1000, 1500,2000,

4000, 1, 2, 3, 4, 40001

R2=400

V = diag. [0.0025, 0.005, 0.0075, 0.01,

0.00025, 0.25, 0.5, 0.75, 1.0, 0.00025].

In Figs 6-7, the joint angles O(4) (solid lines) and
the tip angles 6, (&) (solid lines with marks) are
shown as functions of time. The tip angles are defined
as

e,=  tan-'(^:/^:), (88)

&= COS-'(Z:/,/(X:)~ +b:)' + (z:)~). (89)

InFig. 6 it is noticed that the settling time, t,, i s about
6sec; the shift from coarse control to fine control
occurs at 1, = 2.36 sec; v=41.15"; the ratio of pay-
load with respect to the weight of the flexible ann
is equal to 0.925. I t is well known that if the
magnitudes of V and W arc increased or decreased by
multiplying a factor, R, the poles of A - do not
change their locations; in other words, the estimate
gain does not change. However, the levels of white

45.0

125.0

c-
P- 6.0

-15.0-
0.0 2.0 4.0 6.0 8.0 10.0

T i m in S o c o d s

Tkm In Socondr

Fig. 6. Responses of joint angles and tip angles. I= 360
inches, r,, = 2 inches, r,= 1.9 inches, r'= 370 inches,

C, = CZ = O.S/seCl. dl I= dz = O.Z/set.
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Fig. 7. Responses of joint angles and tip angles.I= 360
inches, re= 2 inches, rl= 1.9 inches, r‘= 370 inches,

C, = c2 = OS/&, d, = d2 = O.~/SCC. R = 100.0.

noises, v and w, are changed and hence the response
of the system, plotted in Fig. 7, is changed. In Fig.
7 it i s seen that the controller works but, because of
the existence of a large amount of white noise, the tip
of the flexible ann oscillates restlessly about the target
position.

DISCUSSION

In this work the single-link flexible robot ann has
two degrees of freedom for rotations (0 and 4) and
one degree of freedom for sliding (d) so that the
space, which can be reached by the end dfector,
is three-dimensional. In the analysis, 8 and 4 are
treated as variables, but the sliding, d, is tmted as a
parameter, i.e. a constant determined by the given
target position.

T h e timedependent white noises, v(t) and w(t),
which appear in qns (69) and (70), arc generated by
invoking a random number generator with the vari-
ance matrices V and W specified by the designer of
the control system.

The governing equations of the system (plant) and
the equations representing the measurements, which
have been derived rigorously, are nonlinear. No
attempt whatsoever has ban made to linearize those

equations. However, the estimator (observer) was
constructed based on the linear vmion of the system.
Also, it is noticed that the number of beam elements
used to model the plant, n, and the observer, R, may
be different; for example, for tbe cases reported in this
work, n = 8 and R = 4. T h i s means the observer i s
linear and involves very few variables. For practical
purposes, it implies that real-time control of flexible
robot a m is feasible.

U damping is included in the system, one may
prove that even a very simple coarse control law
serves the purpose to control the flexible robot ann
by setting the joint angles at precalculated values and
ktting nature (in th is case,damping) take itscourse.
However, the settling time is too long to be practical.
On the other hand, as i t becomes clear in this study,
the combination of the coarse control and the fine
control works even if the system has no damping at
all.Generally speaking, as has been pointed out by
Book et ul. [6], damping in the robot arm made of
most practical materials is infiuential on higher
modes, but not on the dominant mode of the arm. I t
is suggested that engineers do not count on damping
for the purpose of controlling the flexible robot arm.
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