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ABSTRACT

A general purpose finite element program for the analysis of three dimensional
elastic-plastic solids at large strains has been developed. In this work, this program is
utilized to analyze a sample problem. The numerical results indicate the essential
differences among the linear elastic, large strain elastic, and large strain elastic-plastic
solutions. The issue of residual stresses is presented. The performance measure of com-
puter software in general and finite element programs in particular is discussed.

1. INTRODUCTION

Among numerous theories of elastic-plastic solids, E.H. Lee’s theory [1-6] is
unique in the sense that the decomposition of total deformation into the elastic and the
plastic pans is made at the deformation gradient level, i.e. x;x = FjF, while the
other theories start with the decomposition of strain (or strain rate) into the elastic and
the plastic parts such as Ex; = Eg; + Ef; in Green-Naghdi’s theory [7]. Chiou er al.
[8] made a comparison between these two theories and it was found that, in the case of
simple tension test, the unloading curves are parallel on the plots of true (Cauchy)
stress vs natural strain according to Lee’s theory, and, on the other hand, according to
Green-Naghdi’s theory, the unloading curves are parallel on the plots of Piola-
Kirchhoff stress vs Green-Lagrange strain but not on those of true stress vs natural
strain. It can be shown that all the essential differences disappear, at least on a practi-
cal level, if the strains involved are infinitesimally small.

In the nonlinear analysis of solids, there are two kinds of nonlinearities - the
material nonlinearity and the geometric nonlinearity. The material nonlinearity is basi-
cally due to the existence of a nonlinear relation between the stresses and the strins.
The geometric nonlinearity implies that the strains involved are very large so that all
the stress measures (Cauchy stress, Kirchhoff stress, first and second order Piola-
Kirchhoff stresses, etc.) and the strain measures (engineering strain, natural strain,
Green-Lagrange strain, etc.) are very much different in meaning and in numerical
values.



There are many interesting problems and many unanswered questions in this
field. It is felt that a general purpose finite element program with the capability of
analyzing elastic-plastic solids at large strain might be a useful research tool to explore
the field. With this belief, the finite element procedures for Lee's theory and Green-
Naghdi's theory have been formulated [9]. A general purpose finite element program
based on Lee’s theory has been developed by Chiou ez al. [10]. This program has
been used to analyze elastic-plastic solids in simple tension test and simple shear test
up to very large plastic strain. It was found that the agreements between the finite ele-
- ment solutions and the exact solutions are excellent Also, Chiou has applied this pro-
gram to analyze the tensile and compression tests of an aluminum ring and good agree-
ment was found between the finite element solutions and the experimental data [11].

These lead to an interesting question: how can one measure the performance of
computer software in general and finite element programs in particular? In this work,
this finite element program is invoked to analyze a sample problem. The numerical
results are presented and the issue of the performance measures of the computer
software is discusssed.

2. CONSTITUTIVE RELATIONS

The general and detailed constitutive relations of E.H. Lee’s elastic-plastic theory
at finite strain have been derived by Lubarda and Lee [5]. In this work, let the special
constitutive relations which are employed in the general purpose finite element program
be listed as follows. First, the Helmholtz free energy density, X, as a function of the
invariants of the elastic Cauchy-Green tensor, ¢;;, may be expressed as
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Then the Kirchhoff stresses, 1;;, can be written as
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The Jaumann rate of the Kirchhoff stresses, 13-, can be obtained as
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and D may be named the elastic component of the deformation rate tensor, whose
definition and the associated discussions and derivations have been given by Lubarda
and Lee [5). Now egn.(4) and its inverse may be written as .
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Notice that A is a function of ¢ and therefore, in view of egn.(3), A, as well as A7l is
a function of the Kirchhoff stresses. The plastic deformation rate tensor, d?, is pro-
posed to be
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where 1 is the Kirchhoff stress deviator, H is the strain hardening modulus. and S, the
current yield strength, is equal to
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And "loading" is defined as the case of

1.5t;1; =S and ti10>0 an
while "unloading” is |
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and "neutral loading” is
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Since the total deformation rate, d, is the sum of d¢° and D, the constitutive relation in
rate form can be expressed as
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where / is equal to 1 in loading and O in unloading or neutral loading. Let the inverse
of eqn.(14) be written as

T3 = Gijmn Gmn as)
then the Truesdell stress rate tensor, G;;, can be obtained as [9,12)
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where
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and J is the determinant of the deformation gradient.

3. FINITE ELEMENT PROCEDURES

The finite element procedures for the analysis of elastic-plastic solids at large
strain have been given by Lee [9] and implemented by Chiou [11] and Chiou e al.
{10]. In this work, only a few comments on the finite element procedures will be made.
Equation (16), which links the Truesdell stress rate tensor and the deformauon rate ten-
sor, may be regarded as the stress- strain relation in rate form with a° being the "slope”
at a particular point in stress space. However, in nonlinear finite element analysis, one
has to have a stress-strain relation in incremental form which enables the increments in
displacements, strains, and stresses not to be infinitesimally small. Therefore, it is pro-
posed to adopt the following incremental stress-strain relation
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where Ac” and Ag® are the incremental Truesdell stresses and the incremental Washizu
strains, respectively [9,13]. It has been shown that
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Therefore & should be the average of a° between two stress states ( state 1 and state
2), ie.,
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and the two stress states have to be weighted differently and carefully, especially when
the stresses of state 1 (the beginning state) and state 2 (the ending state) are-such that
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It is seen that eqn.(20), in the limiting case, approaches eqn.(16). The calculation of
stresses at state 2 involves approximation and iterations as discussed by Lee [9]. On

the other hand, for those elements which never experience plastic deformation, one
may directly calculate 6(2) (after incremental displacements, Au, are obtained) as
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This process does not involve the kind of approximation and iterations discussed
above. Actually, it has been tried to solve the same elastic problems through two
different routes as mentioned above and the results turn out to be the same -- the com-
puter software has passed a perfomance measure test.

The nodal forces of a generic element, F 4, can be calculated as
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where B(2) is the matrix, at state 2, which links the displacement gradient and nodal
displacements, i.e.,

u;j=Bjg Ug . (25)

The sum over all the elements will yield all the components of the nodal forces at
every nodal point , including the externally applied nodal forces and the reactive forces
at the boundary due to displacement-specified boundary conditions. The calculation of
nodal forces using eqn.(24) is an exact treatment in the sense that it has nothing to do
with the approximations whatsoever involved in obtaining the incremental displace-
ments, strains, and stresses. Therefore, the numerical results show that the total forces
and the total moments due to the calculated nodal forces are all vanishing -- the com-
puter software passes another test. However, the calculated nodal forces may tum out
to be different from those expected and, when that happens, the differences will serve
as the forcing terms in the next iteration until the differences are within the specified
error tolerance.

4. SAMPLE PROBLEM

%

Consider a cantilever beam that originally occupies the space "
V= {xy,z!0XSL,-b<Sysb,0s2<h ) . (26)

The beam is fixed at x=0 and subjected to a downward loading at x=L . Because of the
mirror symmetry with respect to the xz plane at y=0, one only has to analyze half of



the beam. The finite element mesh for this cantilever beam consists of 80 8-node solid
elements, 8 in the z -direction and 10 in the x-direction, and 198 nodal points as shown
in Fig.1.

Figure 1. Undeformed Shape of the Cantilever Beam

The boundary conditions may be expressed as

(1) Atx=0

u,=uy=u,=0 . 27
(2) Aty=0

u =0, fi=f=0, (28)
(3) Atx=L

If,=-1*F , f,=f,=0, 29)

and the nodal forces at other boundary points are zero. The boundary conditions
specified at y=0 are due to the mirror symmetry, the boundary conditions specified at
the free end means a unit downward force is properly distributed to the nodal points at
x=L, and F is the factor which goes up monotonically from zero to one in loading
and back from one to zero in unloading. Upon the release of the applied loading, i.e.,
F =0, one may choose to keep the boundary conditions at the fixed end the same as
those in eqn.(27), in other words, every point at x=0 is always stationary. This is
referred to as Case 1 later.

On the other hand, in unloading,one may choose the boundary conditions at x=L
to be

u;(0y,2=0, u,(00z)=0 , (30)
4, (0,000 . 31)

Note that u,=0 in eqn.(30) is due to the mirror symmetry with respect to the yz plane
at x=0, 1,=0 in egn.(30) is also due to the mirror symmetry at y=0. However, &, =0
at the origin as specified in eqn.(31) is aimed at eliminating the rigid body motion and
the computer results turn out to be that f,=0 at the origin because it does not take a
force to prevent the rigid body motion -- the computer program passes another perfor-
mance measure test. The case with the boundary conditions specified in eqns.(30,31)



for unloading is referred to as Case 2 later.

If elementary beam theory is employed, the bending stress, G, will be obtained
readily as

O = 12(L-xXz-h/2) | BA® . ' (32
The maximum bending stress occurs at z=0 and z=k where -
6, (x) = 6(L~x)/bh? . (33)

Later, for illustrative purposes, the stresses will be normalized with respect to G, (x);
also the normalized z -coordinate is defined to be

Tm(2z-h)/h . (34)

(a) Elastic-Plastic Deformation

(b) Plastic (Residual) Deformation--Case 1

Figure 2. Deformed Shape of the Cantilever Beam .

The material and geometric constants and other relevent parameters chosen in this
work are -

L=10[L], b=03[L), h=10[L], (35)
A = 1000[F/L?), p = 1000[F/L%), H = 25[F /LY, (36)



So=100[F/L?} , 37

where S, is the initial yield strength; the Young’s modulus and the Poisson’s ratio,
corresponding to the Lame’s constants, are

E =2500[F/L%), v=025 . : (38)

The terminologies of Young’s modulus, Poisson’s ratio, and Lame’s constants are still
used here, however, it by no means implies that the work is in the scope of linear elas-
ticity. On the other hand, when the strains involved are small, the solutions will reduce
to the linear elastic ones.

5. NUMERICAL RESULTS

The graphic representations of the deformable body at the fully developed
elastic-plastic state (F=1) and at the load released state ( F is reduced to zero) are
shown in Fig.2a and Fig.2b, respectively. The deformation was not exaggerated so that
one may appreciate the large elastic-plastic strains by comparing Fig.1 and Fig.2a.
Similarly, the differences between Fig.] and Fig.2b are the plastic strains and the
differences between Fig.2a and Fig.2b are the elastic strains. It is seen that the strains
involved are indeed very large.
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Figure 3. The Linear Elastic Solution
O -- Stresses at Gauss Points
® - Average Stress at Centers
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The normalized bending stresses at the Gauss points and centers of eight elements
nearest to the fixed end are plotted as functions of the nomalized z-coordinate in
Fig.(3-7). The solid line represents the solution of the elementary beamh theory, which
serves as a reference for comparison. It is seen in Fig.3 that the linear elastic solution,
which is obtained by multiplying the solution at #=0.01 by one hundred, matches the



beam theory solution almost perfectly.
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Figure 5. The large Strain Elastic-Plastic Solution
O -- Stresses at Gauss Points
® - Average Stresses at Centers



The large strain elastic solution, presented in Fig.4, is obtained by setting the ini-
tial yield strength at a very large value so that the material will never experience plastic
deformation. It is observed that (1) the stress distribution is no longer a Straight line,
and (2) the anti-symmetry between stresses in tension and in compressnon does not
exist. Those observations are the effects of large strains.

The elastic-plastic solution, presented in Fig.5, indicates (1) the flatmess of the
(average) stress distribution near the top and the bottom of the beam, (2) the bending
moment as a result of the bending stresses is smaller because the moment arms of the
applied forces at the free end become smaller due to large deformation, and (3) the
spread of stresses within an element becomes pronounced especially when the magni-
tude of the average stress becomes large.
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Figure 6. The Residual Stresses (Case 1)
O - Stresses at Gauss Points
® - Average Stresses at Centers

The residual stresses of Case 1 and Case 2 are shown in Fig.6 and Fig.7, respec-
tively. The existence of those residual stresses in Case 1 is understood because the
boundary conditions specified in eqn.(27) represent very severe constraints. However, it
is a puzzle to observe that the residual stresses in Case 2, of which the boundary con-
dition - eqn.(30) is only a representation of mirror symmetries, are as pronounced as
those in Case 1.

_;L

The magnitude of the stress at the Gauss point, which is nearest to the origin, is
shown as a function of the deflection of the beam at the free end, [~i,(L,0,0)], in
Fig.8 for the entire loading and unloading processes. The differences between Case 1
and Case 2 can be observed. The contrast between the stiffness in the elastic range and
that in the plastic range is indicated also.
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6. DISCUSSIONS

The performance measure of computer software becomes an important issue as
computer users are concemed about the quality of software which they use. Recently, a
set of techniques, collectively called software engineering, has evolved to deal with
computer software as an engineering product that requires planning, snalysis, design,
implementation, testing, and maintenance [14)]. In this work, it is only attempted to dis-
cuss this broad issue from a particular view point : for a given computer software,
what and how does one measure its performance? A list of items which need to be
measured together with some discussions and/or comments is given as follows (with no
intention to claim that this list is complete) :

(1) Existence of syntex errors, bugs, or defects

(2) Efficiency

Efficiency is usuvally measured by the cpu time, number of lines of code, storage
requirement, etc. For softwares which are run on a vector processing computer,
efficiency also means how well the softwares take the advantage of vector processsing.
The finite element program used in this work is run on Cyber 205, a supercomputer,
and efforts have been made to vectorize the code. It is worthwhile to say that how to
develop a finite element code which fully utilizes the capability of a vector processing
computer is a very interesting and important topic.

(3) User friendliness

For certain software, this is perhaps the most important issue. However, the measure of
user friendliness, to some extent, is a subjective judgement.

(4) Effectiveness / Correctness

For finite element programs, this is the measure of validity. It is felt that, at least, one
should compare the finite element solutions with the exact analytical solutions of some
simple problems. That is why this finite element program has been used to analyze
simple tension and simple shear problems up to very large elastic-plastic strains[10]. In
general, if there is no exact solution to compare with, it may be proper to check with
common sense Or even intuition. Also, cross examinations may be helpful --- in this
work, a few cross examinations have been made and discussed in Section 3 and Sec-
tion 4. The measure of effectiveness/correctness will be more accurate if more different
kinds of cross examinations are carried out.

(5) Modularity / Capability for improvement

This is the measure of potentiality for the further development of the software. Usually,
this concerns the developer, instead of the user, of the software.

h S

(6) Generality / Domain of applications N

For finite element programs, this is the measure of numbers of different types of load-
ings, boundary conditions, elements, material properties, etc. in the programs.



(7) Sophistication / Theoretical Profoundness

This is a measure of the level of profoundness associated with the software. In finite
element analysis, the level of profoundness increases from elasticity to plasticity, from
one dimensional through two dimensional to three dimensional, from -small strain
through large deflection to large strain, from static analysis to dynamic analysis, etc. It
is worthwhile to say that each increase in the level of profoundness brings a better
. understanding and, sometimes, more unanswered questions in the field.

(8) Artificial intelligence

To define and measure the level of artificial intelligence is perhaps the most challeng-
ing task in the performance measure of computer software. Usually, the finite element
programs existing nowadays are regarded as having no, or at most limited, intelligence,
simply because heuristics is hardly involved.
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