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A B S T R A C T

A general purpose finite element program for the analysis of three dimensional
elastic -plastic solids at large strains has been developed. In th is work, this program is
utilized to analyze a sample problem. T h e numerical results indicate the essential
differences among the linear elastic, large main dastic, and large strain elastic -plastic
solutions. T h e issue of residual stresses i s presented. The performance measun of com-
puter software in general and finite element programs in particular i s discussed.

1. INTRODUCI'ION

Among numerous theories of elastic -plastic solids, E.H. Lee's theory (1-61 i s
unique in the sense that the decomposition of total defonnation into the elastic and the
plasuc pans i s made at the deformation gradient level, i.e. x , ~= F;FfK. while the
other theories start with the decomposition of strain (or strain rate) inu, the elastic and
the plastic parts such as EKL = EL + in Green-Naghdi's theory [7]. chlou et 01.
181 made a comparison between these two theories and it was found that, in the case of
simple tension test, the unloading a w e s are parallel on the plots of m e (Cauchy)
s tnss vs natural strain according tD Lee's theory, and, on the other hand, according to
Green-Naghdi's theory, the unloading a w e s are parallel on the plots of Piola-
Kirchhoff mess vs Green-Lagrange strain but not on those of m e stress vs ~ t u r a l
Strain. I t can be shown that all the essential differences disappear, at least on a practi-
cal level, i f the strains involved are infinitesimally small.

In the nonlinear analysis of solids. there are two kinds of nonlinearities - the
material nonlinearity and the geometric nonlinearity. The material nonlinearity is basi-
cally due to the existence of a nonlinear relation between the stresses and the su%ns.
The geometric nonlinearity implies that the strains involved are very large so that all
the stress measures (Cauchy s m s , Kirchhoff mess, first and second order Piola-
Kirchhoff suesses. etc.) and the strain measures (engineering suain, xmml strain.
Green-Lagmge strain. etc.) are very much different in meaning and in numerical
values.



'ibere are many intensting problems ud many unanswered questions in t h i s
field. I t is felt thatImral purpose finite ClcmaUprogram with the Capability of

the field. With this belief, the f i t e clement pmccdures for Lee's theory d Gnen-
Naghdi's theory have b m formulated (91. A gawal pupase finite element program
bestd on b e ' s thtory has been developed by chiou et al. (10). 'Rris program has
been used to analyze elastic-plastic solids in simple tension test md simple bear test
up to very Wge plastic main. I t was found that the rgnemenfs between the-fiuite ele-

- ment solutions and the exact solutions arc excellent. Also, Qliou bas applied t h i s pm-
- gram to analyze the tensile and compression tests of an aluminum ring and good agree-

ment was found between the finite element solutions pnd the experimental data [11].
These lead to an interesting question: how can OM meaSure the performance of

computer software in general and fmite element programs in panicular? In t h i s work,
th is dniu element program i s invoked to analyze a sample problem. The numerical
results are prcsentd and the issue of the performance measures of the computer
software i s discussed.

rnalphg elesti~-plani~~oi idsU svain mi@ be 8 Useful Jtstafch tOOItO CXplOR

2. CONSTITUTIVE RUATIONS

The general and detailed constitutive relations of E.H. Lee's elastic -plastic theory
at finite Strain have been derived by Lubarda and Lee [5]. In this work, le1 the special
constitutive relations which are employed in the general purpose finite element program
be listed as follows. First, the Helmholtz free energy density, Z as a function of the
invariants of the clastic Cauchy-Gmn tensor, ci,, may bc expressed as

L = (k+21)(I 1-3)* I8 - ~ ( 1 2 - U1+3) / 2 ,
where A and c~are the Lame's constants and

11 - ckk , 1 2 = (I:- CijC,/) 1 2 .
Then the Kirchhoff suesses, lij.can be written as

Ti
J
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T h e Jaumann rate of the Kirchhoff suesses, 7;. can be obtained as

%;=AiF. D, ,

where

(4)

and D may be named the elastic component of the deformation rate tensor. whose
delininon and the associated discussions and derivations have been given by Lubarda
and Lee [5]. Now qn.(4) and its inverse may be written as a

Notice that A is a function of c and therefore, in view of eqn.(3>, A, as well as A-', i s
a function o f the Kirchhoff smsses. The plastic deformation rate muor, c)",is pro-
posed to be



= o 1

W n g

vnlwding or neutral W i n g (9b)

where 6 is the Kirchhoff stress deviator, H is the strain hardening modulus, and S, the
currrnt yield strength, i s equal to

~ = m a x d w . - - (10)

Since the total deformation rate, d, i s the sum of dp and D, the constitutive relation in
rate form can be expressed as

I

whereI is qual to 1 in loading and 0 in unloading or neuual loading. Let the inverse
of eqn.(l4) be written as

';=aip dm ,
then the Tmesdell stress rate tensor, 03, can be obtained as [9,12]

0 .

Q ~ J= a ~ mdm v

where

and J i s the determinant of the deformation gradient

3. FINITE ELwIEhT PROCEDURES

The finite element procedures for the analysis of elastic -plastic solids at large
strain have been given by Lee 191 and implemented by Chiou [ll]and CXou er af.
[IO]. In t h i s work, only a few cOmmentS on the finite element procedures wil l be made.
Equation (16). which links the Tmesdell smss rate tensor and the deformation rate ten-
sor, may be regarded as the suess -strain relation in rate form with a* being the "slope"
at a particular point in stress space. However, in nonlinear finite element analysis, one
has to have a stress-suain relation in incremental form which enables the increments in
displacements, strains,and stresses not to be infinitesimally small. Therefore, it i s pro-
posed to adopt the following incremental stress -strain relation

.
where bo* and A&* are the incremental Truesdell stresses and the i n c r t m d Washizu
strains, respectively I9.131. I t has bten shown that



Therefore X' should be the average of a- between two stress states ( state 1 and state
2 ), i.e.,

(20)
mb thc two stress states have to bc weighteddifferauiy md carefully, m y when
the stresses of state I (the &ginning state) and aatt 2 (the ending SWE)a e such that

(21)

It i s san that eqn.(20), m the limiting case. approaches qn(16). The calculation of
a s s e s a state 2 involves approximation and iterations as discussed by Lee [91. On
the other hand, for tbose elements which never experience plastic deformation, one
may directly calculate a(2) (after incremental displacements, Au, are obtained) as

(22)

X' = merugc ( i [0(1) l , r'[a(2)1 ,

- PI
1.%,;(1)7;i(l) c s2 , 15T,;(2)r,;o) > s2 .

X ~ J= Sx + (ui +&,)x 9

T h i s process does not involve the kind of approximation and iterations discussed
above. Actually, i t has been tried to solve the same clastic problems through two
different routes as mentioned above and the results turn out to be the same -- the com-
puter software has passed a perfomance measure test.

The nodal foxes of a generic element, Fa, can be calculated as

FJ ~)=la,(2)Bi,a(2Mv (2) 9 (24)

where B(2) i s the mauix, at state 2, which links thc drsplaccment gradient and nodal
displacements, i.e.,

(25)
The sum over all the elements will yield all the components of the nodal forces at
every nodal point , including the externally applied nodal forces and the reactive forces
a the boundary due to displacement -specified boundary conditions. The calculation of
nodal forces using qn.(24) i s an exact munent in the sense that it has nothing to do
with the approximations whatsoever involved in obtaining the incremental displace-
ments. strains, and stresses. Therefore, the numerical results show that the total forces
and the total moments due to the calculated nodal foxes arc all vanishing -- the com-
puter software passes another test. However, the calculated nodal forces may turn out
to be diffennt from those expected and, when that happens, tht differences will serve
as the forcing terms in the next iteration until the differences ut within the specified
e m f tolerance.

u i j = Bija Ua .

4. SAMPLE PROBLEM

Consider a cantilever beam that originally occupies the space

v = ( xg,z l W S L , - b S y 5 b , ~ ~) . 06 )
The beam is fixed at PO and subjected to a downward loading at x 4 . Bgcausc of the
mirror symmetry with respect to the XI plane at y=O, one only has to analyze half of



the beam. 'Ihe 6nite element mesh for this cantilever beam consists of 80 8-node solid
elements, 8 in the zd i rec t ion urd 10 in tht x-dirtction,md 198 nodal points as shown
inFig.1.

Figure 1. Undeformed Shape of the Cantilever Beam

T h e boundary conditions may be expressed as
(1) At x 4

4 = 0 , f,=f,=O 1

(3) At x=L

Xf, =-1*F . f,=f,= 0 . (29)

and t h e nodal forces at other boundary points are zero. The boundary conditions
specified at y 4 are due to the mirror symmetry, the boundary conditions specified at
the free end means a uni t downward force i s properly distributed to the nodal points at
x=L , and F is the factor which goes up monotonically from zero to one in loading
and back from one to zero in unloading. Upon the release of the applied loading, Le.,
F 4 , one may choose to keep the boundary conditions at the k e d end the same as
those in eqn.(27), in other words, every point at x d is always stationary. T h i s i s
referred to as Case 1 later.

On the other hand, in unloading.one may choose the boundary conditions at x=L
to be

(30)

(31)

Note that 4 4 in qn.(w) is due to the mirror symmetry with respect to the yt' plane
at x 4 , 430 in qn.(30) i s also due to the mirror symmetry at y=O. However, u, = 0
at the origin as specified in eqn.(3l) i s aimed at eliminating the rigid bady motion and
the computer resdts turn out to be that f,=Oat the origin because it &s not take a
force to prevent the rigid body motion - the computer program passes mother perfor -
mance measure test The case with the boundary conditions specified in eqns.(30.31)

rr,(O.y * z H , 4(0'0Z 1= 0 .
u,(0,0,0)=0 .

-L



for unloading is referred to as Case 2 later.

Lf elementary beam theory i s employed, the bending stress, a,, will be obtained
rtadily as

a, 0 12(L-~)@-hn)/ bh3 .
The maximum bending strcss occurs a! z=O and z=& where

O,,,(X) = ~(L-x)/ 6h2 . (33)
Later, for illustrative purposes, the m e s s e s will k normalized with respect to a,,,(%);
also the normalized z-coordinate is defined to be

f r ( 2 z - h ) l h . (344)

X

(b) Plastic (Residual) Deformation --Case 1

Figure 2. Deformed Shape of the Cantilever Beam

T h e material and geometric constanrs and other relevent parameters chosen in t h i s
work are -

L = lO[L], b = 0.3[L], h = l.O[L],

x = 1000[f/L2], p = 1000[F/L2], H = 25[F/L2J,



so = 1oo[F/t21 , (37)
where So is the initial yield strength; the Young's modulus and the Poisson's ratio,
comsponding to the Lame's constants, are

E = 2500[F/t21, v = 0.25 . (38)
Thc terminologies of Young's modulus, Poisson's ratio, and Lame's cnnstms are mill
used here, however, i t by m means implies that the work is in the scope of lintar elas-
ticity. On the other hand, when the strains involved are small, the solutions will reduce
to the linear elastic ones.

5. NUMERICAL RESULTS

The graphic rtprtsenrations of the deformable body at the ful ly developed
elastic -plastic state (F-1) and at the load released state ( F i s reduced to zero) are
shown in Fig.2a and Fig.2b, respectively. The deformation was not exaggerated so that
one may appreciate the large elastic -plastic strains by comparing Hg.1 and Fig.2a.
Similarly, the differences between Fig.] and Fig.2b are the plastic strains and the
differences between Fig.2a and Fig.2b are the elastic mains. I t i s seen that the strains
involved are indeed very large.

Figure 3. The Linear Elastic Solution
0 -- Stresses at Gauss Points
l - Average Stress at Centers

The normalized Miding stfesses at the Gauss points and centers of eight elements
nearest to the fixed end are plotted as functions of the nomalized r u m d i n a t e in
Fig.(3-7). The solid l i ne represents the solution of the elementary kam tbtory, which
sewes as a reference for comparison. I t i s seen in Fig.3 that the linear elastic solution,
which is obtained bj multiplying the solution at Fr0.01 by one hundml, matches the

-L



beam theory solution almost perfectly.
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Figure 4. The Large Strain Elastic Solution
0 - S m s e s at Gauss Points
l - Average Suesses at Centers

-Figure 5. T h e large Strain Elastic -Plastic Solution
0 -- Suesses at Gauss Points
l - Average Stresses at Centers



Tbe large strain elastic solution, prcscmed in Fig.4, is obtained by setting the ini-
tial yield strength at a very large value so that tht material will never experience plastic
deformation. It is obstrvcd that (1) the stress distribution is no longer a straight line,
md (2) thc mti-symmeuy between smsscs in m i o n and in compression d o t s not
exist mse observations an tk effects of large strains.

The elastic-plastic solution, prtsenttd in Fig.5, indicates (1) tfre fittaess of the
- (average) stress distribution mar the top and the bottom of the beam, (2) the bending

moment as a rtsult of the bending strtsses i s smaller because the momem m s of the
applied forces at the free ad become smaller due to large deformation, and (3) the
spread of ~ ~ t ~ t s s c swithin an element bccomes pro~uncedcspeiatly when the magni-
tude of the average stress becomes large.

Figure 6. 'The Residual Stresses (Case 1)
0 - Stresses at Gauss Points
l - Average Stressts at Centers

T h e residual stresses of Case 1 and Case 2 arc shown m Fig.6 and Fig.7, respec -
tively. The existence of those residual stresses in Case 1 is understood because the
boundary conditions specifiedin cqn.(27) represent very were constraints. However, i t
i s a puzzle to observe that the residual stresses in Case 2, of which the boundary con-
dition - qn.(30) is only a representation of mirror symmeuies, art as pronounced as
those in Case 1.

%X

The magnitude of'the stress a! the Gauss point, which i s nearest to thc origin, i s
shown as a function of the deflection of the beam a! the free end, L~( t ,O ,O) ] , in
Fig.8 for the entire loading and unloading processes. The diffemwsbawecn Case 1
and Case 2 can be observed. The ammt between the stiffness in the elastic range and
that in the plastic range is indicated also.



Figure 7. The Residual Stresses (Case 2)
0 - Stresses at Gauss Points
l -- Average Stresses at Centers
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x

Figure 8. %e Bending Syess -- Deflection Curve in Loading
and Unloading Processes
l -- case 1 O--Case2

-



6. DISCUSSIONS

Tbe ptrformancc measure of computer softwart becomes an imponant issue as
computer users art collccmed about the quality of softwan which they USC.Recently, a
Eet of techniques, colltctively called m,fnvart engineering, has evolved to deal with
computer software as an engineering product that rtquires planning, d y s i s , design,
implemernation, testing, tnd maintenance [14]. In this work it i s only utanpted to dis -
cuss this bmad issue from a particular view point : for a given canputcr software,

- what and how does one measure its performance? A list of items which ILced to be
- measured together with some discussions and/or comments is givcn as follows (with no

intention to claim that t h i s l ist i s complete) :

(1) Existence of s p u x errors, bugs, or defects

(2) Efficiency

Efficiency i s usually measured by the cpu time, number of lines of code, storage
requirement, etc. For softwares which are nm on a vector processing computer,
efficiency also means how well the softwares take the advantage of vector processsing.
The linite element program used in this work i s nm on Cyber 205, a supercomputer,
and efforts have ken made to vectorizc the code. I t is wonhwhile to say that how to
develop a linite element code which ful ly utilizes the capability of a vector processing
computer is a very interesting and important topic.

(3) User friendliness

For certain software, t h i s i s perhaps the most important issue. However, the measure of
user friendliness, to some extent, is a subjective judgement.

(4) Effectiveness / Correctness

For finite tlemem programs. t h i s i s the measure of validity. I t is felt that, at least, one
should compare t h e h t e element solutions with the exact analytical solutions of some
simple problems. That i s why this l in i te element program has been used to analyze
simple tension and simple shear problems up to very large elastic -plastic strains[lO]. Ln
general, if there i s no exact solution to compare with, it may be proper to check with
common stnse or even inmition. Also, cross examinations may be helpful --- in t h i s
work, a few cross examinations have been made and discussed in Section 3 and Sec-
tion 4. T h e measure of effenivemtss/mmtness will be more accurate i f more different
kinds of cross examinations axt carried out

(5) Modularity / Capability for improvement

T h i s i s the measure of potentiality for the funher development of the software. Usually,
th is concerns the developer, instead of the user, of the software.

.(6) Generality / Domain of applications
2

For finite element prognhs, t h i s i s the measure of numbers of different types of load-
ings, boundary conditions. elements, material properties, etc. in the pmpqms.



(8) Artificial intelligence

To define md measure the level of anificial intelligence i s pcxbaps the most challeng -
ing task in the performance m e w of computer software. Usually, the finite element
programs existing nowadays arc regarded as having no, or at most limited,intelligence,
simply btcaust hcurisrics is hardly involved.
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