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ABSTRACT

A parallel link manipulator has been designed, which may be used as a robot wrist. The
dynamic equations of the system have been formulated rigorously without assuming that the
displacements and rotations are small. In computer simulation, it is shown that this manipula-
tor can be used to perform tasks such as position control, path tracing, and force control. For
each task, the control algorithm is formulated and tested.

INTRODUCTION

Most of today’s industrial robots are built of successive links, usually hinged at rotary
joints, which are actuated in a coordinated fashion to position the end-effector. In contrast to
this configuration, the actuators/links assembled in the parallel link manipulator are not staged
one atop the other and each link serves a role equal to its neighbors. Generally speaking,
serial link manipulators have the advantage of access to large work spaces. On the other hand,
parallel link manipulators are known for the simplicity of their mechanical design, and their
high strength- and stiffness-to-weight ratios, because their actuators bear no moment loads but
act in simple axial force. They are also known for their high force and moment capacity, since
their actuators act all in parallel.

The parallel link manipulator is of interest in its own right, from the point of view of its
. design, kinematic analysis, dynamics, control, and performance. It can be used as a robot
manipulator by itself and it can also be used as a robot wrist by attaching it to a robot arm.
The idea of parallel link manipulator was first used for the design of flight simulators by
Stewart [1]. With the increasing interest in robotic manipulators, studies have been conducted
for its use as a mechanical wrist [2], a compliant device [3], a force/moment or position sen-
sor [4], and a robot arm {5-11]. Recently, the Robot Systems Division at NBS has built,
analyzed, and measured the stiffness of a six-cable robot crane suspension system [12-13]. Do
and Yang have derived the dynamic equations and performed the inverse dynamic analysis
and computer simulation of a Stewart platform [14].
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In this paper a new design of parallel link manipulator is proposed. In this design, six
identical pistons, each controlled independently by a hydraulic system, are used to connect
two plates (platforms). The damping, as well as the compliance, of the system can be
adjusted. The dynamic equations of the system are rigorously formulated without assuming
that displacements and rotations involved are small. In this work, it is intended to demonstrate
that this manipulator can be used for tasks such as position control, path tracing, and force
control through computer simulation. For each task, the control algorithm is formulated and
tested. For illustrative purpose, typical numerical results for each task are presented and dis-
cussed. In this work the manipulator is used as a stand alone device. For future research , it
will be interesting to mount this parallel link manipulator as a wrist to a serial link robot arm
and to study the involved issues of dynamics, control, and performance measures.

PROBLEM DESCRIPTION

The parallel link manipulator being considered in this work is shown in Fig. 1. The
manipulator consists of (1) a lower plate which is fixed in space, (2) an upper plate which is
movable with respect to the lower plate, and (3) six actuators which link the two plates
together. In this work, the six actuators are considered to be six identical pistons, each can be
" controlled independently by a hydraulic system which will be described in a later section. Let
the (x, y, z) coordinate system be fixed in space with the origin located at the center of the
lower plate and the z-axis normal to the lower plate. Let the (o, B, ¥) coordinate system be
embeded in the upper plate. The y-axis is normal to the upper plate and the origin of the
(oB.y) coordinate system is located at the center of the upper plate. At reference state, the two
plates are parallel, the orientation of the space axes coincides with that of the body axes, and
the distance between the two plates is denoted by 4.

The i-th piston (i = 1,2,3,...,6) connects point g;, on the lower plate, and point b;, on the
upper plate. The coordinates of a; and b; are

a: (x y,2)=(rcosT;,rsinl; 0), (1)

bi: (o B vi)=(rcosA;,rsin4; 0), 2)
where

(I}, I, 03, T, T, Tg)=(10°, 50°, 130°, 170°, 250°, 290° ), 3)

(A, Ay, Ay, Ay, As, Ag) =(-10°,70°, 110°, 190°, 230° , 310°) . @
TRANSFORMATION

The transformation from one cartesian coordinate system to another can be carried out by
means of three translations and three successive rotations performed in a specific sequence.
The Eulerian angles are then defined as the three successive angles of rotation. In this work,
the sequence is started by rotating the upper plate by an angle ¢ about the y-axis. Then the
upper plate is rotated by an angle 6 about the o-axis and, finally, by an angle y about the B-
axis. Note that the first rotation and the second rotation are the same as those in Goldstein’s
treatment [15], however, the third rotation in Goldstein’s treatment is a rotation of angle vy
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about the y-axis. It can be shown that these two sets of Eulerian angles are equivalent in their
capability to represent any specified rigid body rotation. Let u, , u, , u, be the displacement
components of the center of the upper plate. The space coordinates of a generic point on the
upper plate, after it is rotated and displaced, may be obtained as

X o Uy
o8- [2)
Y u, + h

where (o, B, )7 is the body coordinates of that point and the transformation matrix, P , can
be expressed in terms of the three Eulerian angles as

[coswcos4>—-sinwsin9sin¢ —cosOsing sinycos¢+cosysinBsing
P = |cosysing+sinysinBcos¢ cosBcosd sinysing—cosysinbcos | . 6)
—~sinycosO sin® cosycosd
LAGRANGE’S EQUATIONS
The components of the angular velocity, ® , along the body axes may be written as
0, = Bcosy — ¢sinBsiny , ¢))
@p = + ¢sind , ®)
W, = Bsiny+pcosbcosy |, &)
and the components of the linear velocity, v , along the space axes are simply
Ve = Uy, (10)
vy = U, an
v, = U, . (12)

Let M and I be the mass and the (mass) moment of inertia tensor of the upper plate, respec-
tively, then the kinetic energy of the plate, T , is obtained as

= —;— { M(v,‘2 + vy2+ v,z) +1mm§+ lwwg + 1."(:)72
+ 2 (g@o0g + 2 00, + 2 (0.0 } 13)

Now consider the generalized coordinates , q , and the generalized forces , Q , to be, respec-
tively,

4=(491, 92,9394 95 d¢)

=(uxv uy-uz!e’\l’v¢) ’ (14)
Q=(01,02 03 Q4. @5, Q6 )
=(F;, Fy, F,, Mo, My, M) . (15)

The generalized forces (forces and moments) may include the externally applied forces and
moments and those due to the gravity and due to the forces exerted by the pistons. This
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implicitly implies that the kinetic energy of the pistons has not been taken into account in this
work.

The Lagrange’s equations, which can be derived from either Hamilton’s principle or
D Alembert’s principle, can be written as [15]:

4, T o, i=12.6. (16)

Substituting eqn.(13) into eqn.(16), the following set of governing equations for the upper
plate is obtained as

Mi, =F, , a7
Mi, =F, (18)
Mi, =F, , (08

= (Toq®q + 1 ogtdg + 0y ) d)sinesin\y
= (Ipatqy + Ipgtog + g0y ) écose
+ ([ gy + Tggog + 100, ) ésinecosw

=My, (20)
AV+(lwma+1aBo)B+1a,m,) oy

— (I oy + Tgyg + o0, ) 0y

=M,, 21)
Ag=M,, (22)

where
Ag = (gqWq + 1qp0p + I 0y ) COSY
+ (] 0 + I pyiog + 10y ) siny (23)
AVEIaB(Da-PlaBO)B'FIg’(DY » (24)
Ay =~ (g0 + 14ap + 1 5y ) cOSBsiny
+ (1apWy + Ipgdg + Iy ) sind
_ + (1 o0 + I gy + 10, ) cosBeosy . (25)
Note that My , M, , and M, are moments about the line of nodes, the body y-axis, and the
space z-axis, respectively, while the line of nodes is defined to be the body x-axis before the
rotation y takes place [15]. In terms of the moments about the space axes, Mg , M, , and M,
can be expressed as
Mg =M,cosp + M,sing , (26)

M, = — M, singcosd + M, cosdcosd + M,sinb , 27)



My=M, (28)
Eqns.(26-28) can be rewritten as _

M, = Mgcosd — M sing/cosd + M (singtand , ’ (26%)

M, = Mgsing + M cos¢/cos® — M (cosftan® , (27%)

M, =M, . (28*)

If the principal axes of the upper plate coincide with the body axes, then all the off-diagonal
terms in the inertia tensor (also named as products of inertia) vanish and the governing equa-
tions, eqns.(20-22), may be simplified significantly.

PISTON

The six pistons, which link the upper plate and the lower plate together, are identical.
Each piston can be controlled independently. The piston and its hydraulic control system are
schematically shown in Fig. 2. Consider that chambers 1,2,3 are filled with air and chambers
4,5 are filled with oil, which is assumed to be incompressible. The pressure in the i-th
chamber is denoted by p; ; f is named the piston force; 4; is the effective area of the cross
section; V symbolically represents an orifice, which will provide damping to the system. It is
assumed that the pressures, p; and p,, as well as the height of the second chamber, n, can be
measured; and the height of the third chamber, 8, can be controlled. Obiviously, the pressures
in the second, the third, and the fifth chambers are related as

P2=P3=p =psAslA; (29)
and, by applying the ideal gas law, one obtains

LY =pfLL") . (30)

PAM +A38) =p%Am° + A3d°) , (31)

where p°, p?, £° n°, &° stands for the value of p, p;, & m, 8 at the reference state, respec-
tively. The governing equation for fluid flowing through the orifice can be expressed as [16]:

A& =Asn=sign(ps—pa) VIps—pal / By (32a)
for turbulent flow, and
Af=A4s=@spy /B, (32b)

. for laminar flow, where B, and B, are constants to be determined experimentally. The piston
force is balanced by the difference between pressure induced forces in the first chamber and
the fourth chamber, i.e.,

f+pilAi=ph,s - (33)

Note that, in the reference state,

A,
PYA, =pi’A4=p§’A4=p°zA4 :
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Combining eqns.(29-33), one may obtain the governing equation for the piston as

A
f= m{— D)+ Z2pK & } : - e
- (A4EB)%sign (8) , (turbulent flow) (35a)
DiEI=1, i, , (laminar flow) (35b)
KIES) = A" + A3 _LE (36)

AN+ A8+ AAE —E%/As L€
The total length of the piston, I, is equal to the height of the fourth chamber, &, plus a con-
stant, i.e.,

I=E+C. (37

However, § is related to 1 as
A
E= =M +E . (38)
4

Eqgns.(37,38) imply that the total length of the piston can be measured since n is measurable.
Eqn.(33) implies that the piston force can be measured since p, and p4 are measurable. Then
the governing equation of the piston can be symbolically written as

f=rU,1,8). (39)

For illustrative purpose, the numerical values of all the relevant parameters used in this work
are listed as follows:

r=2in h=3in

A, =03518 in.? A, = 1.6085 in.?
Ay =2.0106 in.? Ay =0.5026 in.?
As =2.0106 in.? L =4in
E°=2in. n°=2in

& =4in C =1.07%4 in.
p° =100 psi M=210b

and the nonvanishing components of the (mass) moment of inertia tensor are
Iog=1Igg= 2 Ib—in?
Iy=4 Ib-in?

The compliance of the piston may be demonstrated by a plot of —f vs AE = E-£° ( a force-
displacement curve ) with Ad = §°-0 being the parameter in Fig.3. It is seen that —f
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approaches infinity as AE approaches 2 inches ( equivalent to E-L ) because the air in the
first chamber is assumed to follow the ideal gas law. There is a lower limit for A at -2
inches ( equivalent to £ =0 ) where the piston force is indeterminate -- at that limiting value,
the piston becomes infinite rigid. The damping of the piston may be demonstrated by a plot of
At vs_time, i.e., solve eqn.(34) with f =0, 8=238° , and the initial condition AE =1 in. at
t = 0. The solutions of eqn.(34) are plotted in Fig.4 for different values of B,. The larger the
value is for B, the longer it takes for A to be reduced to zero. The unit for B, is psi

—sec. /in.3 .

GENERALIZED FORCES

The i-th piston connects point a;(x;, y;, z;), on the lower plate, and point b; on the upper
plate. When the upper plate assumes the generalized coordinates q = (1,4, ,4,,6,y,9), the space
coordinates of the point »; become x; where

X r CosA; u,
x; = |y’ | =P{rsing; [+ uy, |. (40)
Zi‘ 0 u, +h

The unit vector from point g; to point b; is

X=X Yi-¥; 2=z
| = ) ’ ’ 41
e =( 7 7 I ) (41)

where /; is the length of i-th piston, i.e.,

L= N3 + 070 + (@2 (42)
The i-th piston force acting on the upper plate is
f; =S¢

where fis according to eqn.(39), is a function of the length, /;, the time derivative of the
length, I;, and the control variable, §;. From eqn.(42), the time derivative of the length can be
derived as

I = [ =x)% + Oy + =281 1 4, (43)
and, from eqn.(40), (% ,y;,2;) can be obatined as

- %

I‘; L COSA; ﬁx
yi |=P|rsing; |+ 4, |. (44)
ii‘ 0 dz

The forces acting on the upper plate by the six pistons can be expressed as
6
f=2rie . (45)
rt

The moments acting on the upper plate due to the six piston-forces are obtained as
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m= Zr,-xf,-e,- ’ (46)
i=1
where r; is the i-th moment arm ( a vector from the center of the upper plate to point b; )
which can be calculated as

COSA;
r= Pr sinA,— . (47)
0

POSITION CONTROL

One of the basic tasks for a robot to perform is to place its end-effector at a desired
location and orientation, which may be called the target position. For a given target position,
it is straightforward to figure out the final generalized coordinates of the upper plate, § = {
f,.8,.4, 8,y.6 } . In other words, if

tli_lgq(t) =4, 48)

.~ then the end-effector will reach the target position and stay there. Using eqns.(40,42) with the
substituting of q =4, one may find the desired length of the pistons, [(i=1,2,3,..6), and
€:(i=1,2,3,...6) , which is equal to ;~C (eqn.(37)). The mapping from the generalized coordi-
nates to the piston lengths is named inverse kinematics. Hence, the mapping from the piston
lengths to the generalized coordinates is named forward kinematics. For parallel link manipu-
lator, it is straightforward to perform the inverse kinematics but it takes an iterative numerical
procedure to perform the forward kinematics. Let the inverse kinematics and the forward
kinematics be represented, respectively, as

L=G(g, (49)

q=GL), (50)
where

L = (dolsdalsile) - (51

Similarly, let the mapping from the piston forces, f = (f, f2./3.f 4f 5/ ) tO its resultant forces
and moments, F = (F, F, ,F, M, M, M,) at a specific generalized coordinates, be represented as

F=H(q) . | (52)
' This mapping may be named as forward-force-kinematics. Therefore the inverse-force-
kinematics may be represented as

f=H'(Fq). (53)
It is straightforward to perform the forward-force- kinematics but it takes an iterative numeri-
cal procedure to perform the inverse-force-kinematics.

If the task is for the end-effector to reach a desired position and orientation characterized
by § with a priori knowledge of the externally applied forces and moments, including those
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due to gravity, F° = (F{,FJFMIMI M), then the control algorithm may be simply
represented by the following procedures:
(1) Calculate the desired piston lengths by performing the following inverse kinematics

L=G@Q. (54)

‘(2) As the generalized coordinates of the manipulator approach §° asymptotically, the time
derivatives of all the variables approach zero. In other words, the total generalized forces, Q,
approach zero and therefore

HmF = -F¢ . (55)

1 —yco

Then the desired piston forces may be calculated as

t=H'-F.. (56)
(3) The control law may be written as
K[&.5)=fiAsiAAD®, (57)
which implies that the control variable §;(i=1,2,...6) can be calculated as
RN° + &° RT° 0 o o
P = - Rn°~ fo€, £ VAp°, (58)
Felf L EWL-E)] »

where
R §A2/A3 N fo EPOA2A4/A5 .

Because the control device of the manipulator involves the fluid flowing through the orifice,
which is governed by eqn.(32a) or eqn.(32b), this system has an energy dissipation mechan-
ism -- in fact B; or B, may be called the damping coefficient. Therefore, one can prove
theoretically or numerically that, by setting the control variable §; to the value §; , the end-
effector will reach the specified target and the settling time is inversely proportional to the
magnitude of the damping coefficient.

However, it is more desirable to formulate the control algorithm for position control
without a priori knowledge of the externally applied forces and moments because then the
range of application is broader. For example, if the manipulator is commanded to pick up
some objects and distribute them to several specified places, one does not have detailed infor-
mation about the weights of those objects. For these applications, it is proposed to achieve
. position control through the following procedures:

(1) Calculate the desired piston lenghts from eqn.(54).

(2) Set the control variable §;(i=1,2,...6) to be &° and activate the manipulator including the
measurements of the piston lengths and forces. The settling time, ¢, is define to be the time
beyond which all the variables, especially the piston lengths, reach their steady state values,
ie.,

i =L@ < ¢ for t>1t", (59
where /(i=1,2,3,...6) is the length of the i-th piston at t=¢", and ¢ is the specified allowable
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error.
(3) Calculate the following quantities in order
q' =GL"),
F=H(q'), (60)
t=H'F9.

where f* is the measured piston force at t=¢", and F is the calculated force and moment due
to the measured piston forces.

(4) The control variable §; can now be calculated using eqn.(58).

The simulated computer results are shown in Fig.5 and Fig.6, in which the generalized coordi-
nates, q, are plotted as functions of time.

PATH TRACING

In this section, consider the end-effector a pin of length L, , i.e., the position of the tip
of the pin is (0,0.L,) in the (oBy) coordinate system. The task is for the pin to trace a
specified curve in space within a given duration. In other words, the tip of the pin has to
reach (x;,y;,2;) at t=¢; (i=123, - - n).

For illustrative purpose, consider that the curve to be traced in space is a circle which
can be expressed as :

X = Rp cos(2nt/T) ,
Y =R,sin(2mt/T) , 61)
z=h+H ,

where the radius, R, ; the height, # ; and the period, T ; are specified. There is redundancy
involved in the task of path tracing because the manipulator has six degrees of freedom and a
curve in space is only three dimensional. Besides, rotation about the axis of the pin does not
affect the path traced by the pin.

In order to eliminate the redundancy, first let the center of the upper plate, (¢=0,8=0,y=0),
trace a circle specified as follows :

x, = R cos(2rt/T) ,
Y. = R sin(2rt/T) , (62)

z,=H +h —\LT—R,~R.)* .

One may easily verify that the distance between (x,y,z), from eqn.(61), and (x..y..z.) is equal
to the length of the pin, L,. One way to eliminate the redundancy associated with the rotation
about the axis of the pin is to set one of the three Eulerian angles to be zero. In this work , let
¢ = 0, and then the other Eulerian angles are calculated to be

v = sin™ [%iec—cos(ZM/T)] , (63)
P
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R,—R
8= —sin™! —-”T-isin(Znt/T)/ cosw] ) (64)
P

The desired generalized coordinates of the upper plate of the manipulator at time t can be
written as

Gt = (%, y. HNLF - R,~R.)%8,y,0) . (65)
Then the desired piston lengths at time t can be calculated by performing the following
inverse kinematics

L) = G7'@) . (66)

With the assumption that there is no externally applied loading, the control variable of the i-th
piston at time ¢+ may be obtained as ( cf. eqn.(58)):

RM+YC-E)
L-E°
where §;, = 1,(t) - C .
It is proposed to achieve path tracing through the following procedures :
(1) Select a time interval, Ar, which may be named as the cycle time.

(2) Between time t;=t'-Ar and time t,=t’, calculate q(z,), L(ty), and §;(t;) (i=1,2, - - - 6) using
eqns.(65-67) and set the control variables to be §,(zy) for ¢t € [£),25) .

The performance of the manipulator to trace a path can be measured as follows: First,
the difference between the desired position, (x,y,z) from eqn.(61), and the actual (simulated)
position, (x",y’,z"), at time ¢ can be calculated as

e(@)= {xOxP+ Oy TP +z0)r2P)1"? . (68)
For the time period [, ], the index of performance measure, /, is defined as

8;(1) = RN° - fo&, €% 1 Ap° (67)

y
1

m ?!e (t)ar . (69)
The simulated computer results are plotted in Fig.7 and Fig.8. In Fig.7, it is not suprising to
find that the manipulator performs better (the index of performance measure is smaller) for
larger period ( the angular velocity to trace the circle is smaller). In Fig.8, the performance of
the manipulator is seen as a function of the damping coefficient, B,. This function has an
~ optimum when the damping coefficient is at certain value.

I

FORCE CONTROL

In this case let the end-effector of the manipulator be a pin of length L,, as described in
the previous case. The task is for the end-effector to touch a surface (in this work it is
simplified to be a plane) and exert a force of specified amount normal to that surface. Assume
that the robotic manipulator has no a priori knowledge of the position and orientation of the
plane. The plane is characterized by
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ax+ay+az+d=0, 70)
where (a,.,ay.4;) is the unit normal of the plane, and d is the distance between the origin and
the plane. If (x,.y,.2,) is the coordinate of the tip of the pin, then the distance between
(x5 ¥p2p) and the plane is
- D =ax, +a,y, +a,z, +d . 1)
Further assume that the plane is smooth so that the contact force, F, is always normal to the

plane, i.e., friction is neglected in this study. If the plane is an ideally rigid plane, then the
distance, D, must always be greater than or equal to zero and

F=0 if D>0 , (72)
F = unknown if b=0 , (73)

where F=unknown means that the contact force has to be determined by the state of the mani-
pulator, not by the geometric relation between the pin and the plane. However, the contact
problem represented by eqns.(72,73) is difficult to model, to say the least. In this work,
instead, an elastic plane is modeled as follows:

F=0 if b2D, , (74)
F=-kD +F, if D<D, |, 75)
where £ is the spring constant (usually set to be a very large value) of the elastic plane, F, is
the desired force to be exerted on the plane, and D,=F,/k. In this work, k& is set at

1000 Ibf linch . Now the force acting on the tip of the pin, in the vector form, can be expressed
as

F = (Fa,, Fay, Fa,) . (76)

To achieve force control:

(1) Set the control variables at certain properly chosen values so that the end-effector will
approach the plane slowly (by adjusting the damping coefficient to a relative large value).
This step is equivalent to a position control without external forces and moments acting on it
(however, one may include those due to gravity on the manipulator).

(2) when the end-effector encounters the plane, chattering phenomenon may be observed.
After the chattering becomes less pronounced, at time t=t,, calculate the following quantities
. in order:
q@t) =q; = GLGy) an
F(@)) =F, =H{(),q¢)) . (78)
where F, is the force and moment due to the measured piston forces at t=¢,. From F, one can

readily calculate the contact force, F;, at t=t;. Then calculate the desired piston forces, f,, as
follows :

f2 = f(tl)Fo / Fl . (79)
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Based on I(¢;) and f,, one may calculate the desired control variables 8, by using eqn.(58).
(3) The control variables 8(¢) at any time ¢ € [¢,.t;] are set to be

5¢) = 81(t,—t) + 8y(1-1y) ’ | (80)

tf_tl

where 1y is the selected time when the contact force is supposed to reach F,. However, it is
better to repeat Step 2 and Step 3 several times as long as ¢,<t;.

(4) To make sure that the contact force is stabilized at F, after #>#, let the controller go
through the calculation in Step 2 and Step 3 except that ¢, should now be replaced by ¢, + T,
where T is a properly selected time value.

From the computer simulated results, the distance D and the contact force F as functions
of time are shown in Fig. 9 and Fig. 10. The damping coefficient is set at 20 psi-sec/in.? ( 5
psi—sec/in.® ) for the case shown in Fig. 9 ( Fig. 10 ). Notice that the chattering phnomenon is
reflected in Fig. 10.

DISCUSSION

The general form of dynamic equations for a parallel link manipulator has been obtained
as eqns.(17 - 28). The actuators designed in this work are six identical pistons controlled by a
hydraulic system. For a specific control variable, the piston acts like a one-dimensional, non-
linear viscoelastic rod whose stiffness and damping can be adjusted. By changing the control
variable, within a reasonable range, any specified piston force and piston length can be
achieved. With properly chosen control algorithms, this parallel link manipulator can be used
to perform tasks such as position control, path tracing, and force control. In position control,
the end-effector can reach and stabilize at a target position with specified generalized coordi-
nates even without a priori knowledge of the extemally applied forces and moments -- a
much needed capability in robotic assembly tasks. In path tracing, the manipulator performs
better if the specified traveling speed of the end-effector is smaller and, by properly choosing
the damping coefficient, we can make the manipulator achieve its optimum performance.

It is very common to observe chattering phenomena when a machine tool is brought into
contact with a workpiece or a solid surface. However, it has been shown that the chattering
phenomena may be eliminated when the damping coefficient becomes larger -- this can be
achieved by adjusting the orifice area in the hydraulic control system [16]. Position control
and force control can be combined and, by setting the contact force F, at a small value, one
- may use the manipulator in an uncertain environment and avoid damage done by and to the
manipulator.
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Figure 1. The Parallel Link Manipulator, in its Reference State,
and The Coordinate Systems
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