I-
r<
LLifr
|—
3
=>
Ol
"
Tl
W

IEEE COMPUTER SOCIETY
1730 Massachusetts Avenue, N.W.
Washington, D.C. 20036-1903

IEEE
COMPUTER
SOCIETY
PRESS

Hierarchical Cellular Logic and the PIPE! processor:
Structural and Functional Correspondence.

Ernest W. Kent? and

Steven L. Tanimoto3

National Bureau of Standards

and

University of Washington

Abstract

HCL is a hierarchical cellular logie, in
which operations are applied to objects
called bit-pyramids which themselves are
functions on spaces called hierarchical
domains. HCL provides an algebra for
computations involving hierarchical,
multiple-resolution representations of
image data. PIPE is a newly-developed
parallel architecture which supports
multiple-resolution pyramid operations.
This paper establishes that HCL 1is
functionally equivalent to a subset of
PIPE's instruction set, and that every HCL
primitive operation corresponds to a single
machine instruction in PIPE and executes in
a single machine cycle. Further, the
connectivity of HCL data-objects 1is
embedded in the data-paths of the PIPE
architecture. Thus, PIPE can operate upon
the data-objects of HCL directly, without
using extra storage for links or pointers,
and without computation of storage
addresses. As a result, PIPE programs
implementing HCL may be expected to run
enormously faster than corresponding
programs for von Neumann machines, or for
other parallel machines which do not share
PIPE'S architectural correspondence to the
structures of HCL.

Tanimoto (1984) has described a
hierarchical cellular logic (HCL), in which
operations are applied to objects called
bit-pyramids which themselves are functions
on spaces called hierarchical domains. HCL
comprises an algebra for computations
involving hierarchical, multiple-resolution
representations of image data. As a formal
system, HCL supports deductive analysis of
image processing operations as well as the
design of software for the operations. HCL
provides expressive mechanisms for pattern-
matching, resolution reduction, parallel
processing and iterative processing of
images. In addition to providing a formal
theoretical basis for hierarchical cellular
machines, HCL offers the possibility of
efficient compilation of its expressions
into programs for parallel machines with
pyramidal architectures. Considered as a

U.S. Government Work. Not protected by
U.S. copyright.

311

language, HCL compactly supports a large
collection of useful image-processing and
image-description capabilities which make
explicit use of the hierarchical domain.
We therefore are drawn to the task of
implementing the operations of HCL on the
most appropriate available hardware.

Ideally, such a machine should support the
fundamental HCL operations as elementary
machine operations, and should embed in its
connectivity the connectivity of the HCL
objects and domains. The first of these
requirements follows immediately from
considerations of operating efficiency; the
ideal HCL machine should execute rather
than simulate HCL operations. This implies
the ability to specify hierarchical
operations over pyramids and pyramidal
neighborhoods in the micro-code of the
device. The second condition follows from
consideration of both operating efficiency
and storage requirements. The
representation of data objects 1in
hierarchical domains typically requires
multiple storage elements for every data
item. In addition to representation of the
data per se, a system of pointers is
required to establish links to structurally
related data items. The structure of the
data object is implicitly contained in the
connectivity established by this system of
links. Since a single data item may belong
to multiple data objects (e.g., pyramidal
neighborhoods) in different relationships,
it is generally not possible to represent
this connectivity simply in an arrangement
of data elements in address space. As a
result, additional storage elements, or
machine operations, or both, are required
in order to represent or compute the
connectivity of operations over multi-
element data objects. Where these
operations represent elementary HCL

1. "PIPE" is a registered trademark of
Digital Analog Design Associates, Inec.

2. This work 1is
Government employees,
U.S. copyright.

the product of U.S.
and is not subject to

3. The contributions of S. Tanimoto were
in part supported by N.S.F. grant MCS
8310410,

operators, this overhead can lead to
considerable inefficiency. The ideal HCL
device would employ data-flow paths which,
by themselves, ordered the interactions of
data elements and operators so that no
storage elements other than data elements
were required, and no algorithms were
required to compute data element addresses.

The National Bureau of Standards' PIPE
processor (Pipelined Image Processing
Engine) supports a pyramid mode of
operation. As such, it is to our knowledge
the only full-scale pyramid machine in
operation. The work reported here
demonstrates that a subset of the pyramid-
mode operations of PIPE are an exact
embodiment of the fundamental logical
operations of HCL. Furthermore, the data-
flow paths within PIPE exactly support the
connectivity of the HCL data objects, both
within hierarchical domains, and between
hierarchical domains which can exist
contemporaneously in PIPE.

The PIPE image processor (Kent, Shneier,
and Lumia, 1985) was inspired in part by
pyramid concepts traceable to Tanimoto and
Pavlidis (1975) and in part by designs
previously developed in a collaboration
between McCormick, Kent, and Dyer (1980,
1982). This latter work also influenced
subsequent formulations of Dyer (1981),
which had developed out of theoretical work

MPS Stage
(k+1)

©)

MPS Stage
k)

with Rosenfeld (Rosenfeld 1979.) This work
in turn contributed to Tanimoto's
development of HCL. Thus it may not be
surprising that there is an essential
similarity between the fundamental
operations of HCL, and the basic operations
and organization of the PIPE processor.

The PIPE Architecture.

PIPE is composed of a series of modular
processing stages (MPS). Each MPS contains
both memory and processing capability.
These stages are interconnected by three
image-flow pathways (Figure 1). In
general, the forward pathway carries
processed images output from each stage (k)
to the input of the subsequent stage (k-1).
The retrograde pathway carries images
output from each stage to the input of its
predecessor (k+1), and the recursive
pathway carries images output from each
stage back into that stage's own input. At
the input to each stage the information
arriving on its three input paths may be
combined according to any algebraic or
Boolean operation to form a resultant input
image for the stage. Within each stage,
the image is stored in one of two buffers,
from which it can be subjected to a variety
of neighborhood and point operations. Each
stage simuultaneously processes the image(s)
contained in its buffers, completing the
processing of an entire image (256 x 256 x

MPS Stage
x-1

®@ ®

c slolp c s | o [D c s o |°
F wil | E éL C) § 5 é E % L C) E 6 ol & T () To
rom 8ol R|R RO 1% Ino
Preceding —-®——>v‘4 TR ER R N i g ? S ':‘ z g 8 9 Succeeding
Stages Ll ELSID e M el Y v e . Bl uec Stages
G N]
a o . 510
N N N
@ Forward Pathway
@ Recursive Pathway
@ Retrograde Pathway
‘Figure 1. The PIPE processor consists of multiple modular processing stages connected

by concurrent, interacting,

image-flow pipelines.
images 1in each stage are output over Forward, Recursive, and Retrograde pathways.

Results of independent operations on
The

input to each stage may be obtained from any algebraic or Boolean combination of the

images arriving, on the three pathways.

312

8-bit) in one sixtieth of a second (one
machine cycle.) The results of these
operations, in any combination, can be
output to the forward, retrograde, and
recursive pathways leaving that stage.
PIPE can perform a very large variety of
interesting and useful operations on the
images contained in the MPSs. Here we will
concentrate only on a subset relevant to
HCL.

When PIPE is operated in its pyramid mode,
images passed over the forward pathway from
stage (k) to stage (k-1) are reduced to
one-half linear resolution (one fourth the
number of pixels) by a sampling process
which carries forward the odd-numbered
pixels of odd-numbered rows into a densely-
packed array. Images passed over the
retrograde pathway are amplified by
replication, so that each "father™ in stage
(k) is replicated into four adjacent "sons"
in stage (k+1). Images passing over the
recursive pathway are unchanged. 1In this
mode, communications between bit-pyramids
is handled in a consistent manner. The
version of PIPE at the National Bureau of
Standards contains eight MPSs, so that a
complete hierarchical pyramid can be
contained within the machine, starting from
a 256 x 256 pixel image in the first stage,
and tapering to a single pixel in the
eighth. The PIPE stages (or any subset of
them) may operate in non-pyramid mode to
perform a variety of standard operations on
images prior to their development into
hierarchical representations. In
particular, a variety of gray-scale
operations may be performed on images prior
to reduction to one or more binary images
through thresholding on various derived
properties.

The eight bits of a pixel may be treated
Wwithin PIPE as an arithmetic quantity, in
which case point and neighborhood
operations produce appropriate arithmetic
results. It is possible to deal with
hierarchical pyramids of bytes in this
fashion. However, it is also possible to
treat the eight-bit pixel as eight
independent bits of a Boolean vector. 1In
this case, all point and neighborhood
operations treat each bit-plane
independently. Moreover, eight different
and independent sets of point and
neighborhood operations in a stage may be
applied simultaneously to the eight bit-
planes. With this capability, it is
possible to develop and simultaneously
operate upon eight independent hierarchical
Boolean structures or, "bit-pyramids." Up
to sixteen such structures can be handled
if use is made of both of the image buffers
within each stage. Interactions between
different bit-plane structures may occur
both before and after the within-bit-plane
neighborhood operations, in the same
machine cycle.

Pyramids, Hierarchical

] Domains,
Pyramidal Neighborhoods.

and

In HCL, Tanimoto describes a pyramid as a
dgta object whose structure is a
hierarchical domain which is in turn a set
of cells. A cell is specified in HCL by
the 3-tuple (k,i,j). A pyramid is defined
as a function which maps each cell of a

hieraychical domain to a value. A bit-
pyramid is composed of elements whose
values are in the range £0,13, and a byte-

pyramid is composed of cells whose values
are in the range {0,2557%. HCL defines a
pyramidal neighborhood of a cell as
consisting of eight same-resolution
neighbors at level (k), one father cell at
the next lower level of resolution (k-1),
and four sons at the next higher level of
resolution (k+1). This fourteen-cell
neighborhood is illustrated in Figure 2.

HCL defines several operations on pyramids,
which require operators to be applied to
each cell of a pyramid, or to corresponding
cells of multiple pyramids, generating a
pyramid as a result. The result may occupy
a2 new pyramid or replace one of its
predecessors. In this class of operations,
a value is generated for every cell in the
input pyramid(s). By contrast, pyramidal
neighborhood operations defined by HCL on
the pyramidal neighborhood of a cell
require that that cell's new value be
computed by the result of an operation on
all the c¢cells of its pyramidal
neighborhood. This result may replace the
original contents of the cell or contribute
to the construction of a new pyramid.

In PIPE, the cell values are stored in the
bits (or bytes) of the pixels in the image
buffers of the machine's MPS stages, and
pyramids over the hierarchical domain are
contained in a set of such buffers located
in successive stages. Storage space for a
bit-pyramid exists in the set of bit-planes
with a common index over the set of
buffers. Such a storage space will be
referred to as a "domain register." The
identity of an individual bit-pyramid (and
the domain register containing it) will be
understood from the name of the set of
buffers (BUFF-A or BUFF-B) and the the bit-
plane index. In a PIPE domain register,
the index k then refers to the MPS stage
and i,j to coordinates of the cell in the
image buffer of that stage. In pyramid
mode, the PIPE machine passes results of
operations on the contents of every other
cell of every other row of one of its
stages forward into the next stage, where
they are stored in a densely-packed array
constituting the reduced resolution image
of the contents of the preceding stage.
This image constitutes the portion of the
pyramid at the next level (k-1) of the
domain. When this operation is performed
over the machine's eight stages, a full 256

313

To Stage

From Stage k+1)
k+1) A
FOR REC RET
LuT LuT LuT
ALY
J Y
v
ALU
f » To Buff-B
BUFF-A
i
NOP-1 NOP-2
Y
REC FOR (RET)
From Stage
To Stage k-1)

k-1)
Figure 2. A pyramidal neighborhood of a cell in a
hierarchical domain. The "home cell" of each such
neilghborhood has one father, eight lateral neighbors,
and four sons.

314

X 256 array in the first stage is reduced
to a single cell in the eighth stage, thus
forming a complete pyramid.

AND Match and OR_Match operations.

The two basic types of pyramidal
neighborhood operations of HCL are called
AND Match and OR Match. They require bit-
by-bit comparisons between an arbitrary
fourteen-cell pyramidal neighborhood
pattern, P, consisting of 0, 1, or "don't
care" (D) values, and the values of the
corresponding cells of each pyramidal
neighborhood of the hierarchical domain.
This comparison has the value 1 under the
AND Match operation if all pattern elements
(except the D's) equal their corresponding
neighborhood values. The OR_Mateh
operation returns 1 if at least one of the
P-elements which is not a D matches its
corresponding neighborhood value. The
results of all individual comparisons in
the neighborhood are then ANDed in
AND Match, and ORed in OR-Match, to
generate the final value for the contents
of the central cell of the pyramidal
neighborhood. The same comparison pattern,
P, is used in applying the operation to the
pyramidal neighborhood of every cell of the
hierarchical domain, so that an SIMD
architecture suffices.

In PIPE, every 3 x 3 neighborhood bit-plane

DCAN

constitutes a nine-bit vector which
addresses a result in a 512-entry look-up
table. This table can contain the correct
result of a match with P for all possible
nine-bit neighborhoods, for either
AND_Match or OR_Match operations. Every
stage of the machine has the capability of
performing two independent Boolean

neighborhood operations of this sort
simultaneously on the same data
neighborhood. This may occur

simultaneously and independently in every
stage of the machine. In the same machine
cycle, these results, or the data itself,
may be communicated to other stages over
the three inter-stage pathways described
above. Using these resources, a cell and
its lateral neighborhood may participate
simultaneously in operations over three
different pyramidal neighborhoods as a
father, as a son, and as the principal

element (home cell) of a pyramidal
neighborhood. The method by which the PIPE
architecture accomplishes this is
illustrated by reference to figure 3, which
schematizes several of the operating
elements and data-paths of one MPS, a
single PIPE stage. All of the data
elements of a single hierarchical level are
stored in buffers of such a stage (BUFF-A
in the example of figure 3.) During a
single machine cycle each of these elements
and its lateral neighborhood will be
sequentially accessed in raster-scan order,

Level of Father

N\

Pyramidal \
Neighborhood
of a Cell

Figure 3. s
stage (MSP) of the PIPE machine,
of elements.

Level of Lateral
Neighbors

315

Level of Sons

Schematic representation of some elements of a single modular processing
showing operations of HCL.

See text for description

and will participate simultaneously in

three pyramidal neighborhood operations.

The result of the P-comparison operation
over the home cell and its eight lateral
neighbors is accomplished by routing the
neighborhood data through the first
neighborhood operator (NOP-1 in figure 3.)
The result of the P-comparison for the same
neighborhood considered as a neighborhood
of sons is obtained by routing the
neighborhood data through the second
neighborhood operator (NOP-2 in figure 3.)
In the case of son cells, only one of the
four sons of any home cell is in direct
upward communication with the home cell,
due to the sampling procedure used to
generate the half-resolution upward step.
However, the neighborhood operation over
the pyramidal sub-nelighborhood occupied by
the four sons may be used to generate the
value passed up from the communicating son
(without affecting the value stored in the
communicating son.) This value will be the
result of an AND or OR of the P-comparison
operation over the sons' pyramidal sub-
neighborhood. (At the level of the sons,
the communicating son is the central cell
of the 3 x 3 neighborhood, and only it and
its east, south, and southeast neighbors
may affect the result.) Because the AND and
OR operations which combine the P-
comparison operations over the pyramidal
neighborhoods of HCL are commutative, the
results obtained with this procedure do not
differ from the result obtained if all the
son cells communicate directly. The result
of the P-comparison for the same
neighborhood considered as the neighborhood
of a father is simply obtained by routing
the central element of the neighborhood
directly out of the stage, since at the
father level only the central cell of the
neighborhood may affect the result. (The
P-comparison for this single element 1is
obtained after its receipt in the (k+1)
stage.) In all of these operations, PIPE
automatically supplies dummy neighborhood
cells for incomplete neighborhoods at frame
boundaries. PIPE has input and output
stages at either end of the MPS chain which
contain buffers which may be set to zero to
supply a father of the apex and sons of the
base.

As each sequence of results passes out of
the neighborhood operators, these results
are switched to the inter-level
communication paths. The result of the
lateral neighborhood-level P-~comparison
from NOP-1 is routed to the recursive
pathway (labeled REC), and passes back into
the input section of stage (k); the result
of the son-level P-comparison from NOP-2 is
routed to the forward pathway (labeled
FOR), and passes to the input section of
stage (k-1); the father data element is

316

routed to the retrograde pathway (labeled
RET), and passes to the input section of
stage (k+1). The results arriving from
different levels are combined by AND or OR
operations at the input section of each
stage. In figure 3, the input arriving on
the RET pathway from stage (k-1) represents
the father of a home cell in this stage
(k). It is passed through a lookup table
(LUT) which implements the P-comparison on
the father element. The input arriving on
the REC pathway is the stage (k) lateral-
neighborhood result, which is passed
unchanged through a LUT, and ANDed or ORed
with the father result in an ALU. This
result is further combined through a second
ALU with the son result which arrives,
after passing unchanged through a LUT, from
stage (k+1) over the FOR pathway.

The final result is the value of the
pyramidal neighborhood operation for a home
cell in stage (k). Pipeline delays and
read/write-operation address offsets are
employed to secure the arrival of the
result at such a time that it can, if
desired, be written into BUFF-A of figure 3
without taking part in neighborhoods of
cells still being read from BUFF-A. It is
also possible to direct the result to a

dgifferent buffer.

The pyramidal neighborhood operation
described in the preceding paragraphs
occurs simultaneously for all eight bit-
planes, so that the eight bits of the home
cell may contain the results of operations
on up to eight independent bit-pyramids.
Each of these may have been subjected to
different pyramidal neighborhood
operations, employing different P matches.
At each stage of the operations,
interactions among these bit-pyramids are
possible by mapping the eight-bit element
through LUTs, or passing it through ALUs.
In particular, logical and barrel shifts,
and other inter-domain register mappings
may be used to accumulate results. For
example, the result of an AND Match or
OR_Match operation on the domain register
of bit 0 might be shifted left and result
in a new domain register in bit 1, leaving
the original domain register unaltered.
Several 16-bit interactions are available
so that the contents of both buffers may
interact as sixteen independent domain
registers.

Binary Operations.

A second class of operation in HCL requires
logical interaction among bit pyramids of
three hierarchical domain registers,
designated X, Y, and Q. The binary
operations over X, Y, and Q are pointwise
logical operations among corresponding
cells in different hierarchical domain

registers. The HCL operations specify a
Boolean operation over X, or over X and Y,
restricted by the state of domain register
Q. All Boolean operations are permitted.
If only X and Q are involved, any operation
involving a Boolean function of one
argument applied to X (such as NOT X) may
be restricted to apply only where the
corresponding cell of Q = 1. If X, Y, and
Q are involved, a Boolean function of two
arguments over X and Y (for example, X AND
Y) may be similarly restricted to cells
where Q=1..

The HCL binary operations may be carried
out simultaneously at all levels of PIPE,
on all elements of the domain registers, by
passing the eight-bit contents of each cell
through a look-up table containing all
possible outcomes, and returning the result
over the recursive pathway. As in the case
of the pyramidal neighborhood operations,
up to eight domain registers may interact,
including the possibility of transferring
the result to empty domain registers. Two
such eight-domain register interactions may
occur simultaneously at each level because
of the presence of two complete buffers and
operators. The results of the two eight-
domain register operations may also be made
to interact. In many cases, LUTs within
the PIPE stages (omitted from figure 3 for
elarity) will permit binary operations and
pyramidal neighborhood operations to be
combined in the same machine cycle.

Repetition and the "UNTIL NO CHANGE"™ Meta-
operator.

The final set of fundamental HCL
expressions governs the iteration of the
operators already described. The essential
requirement is to be able to repeat any
operation, either for a fixed sequence, or
until no further change occurs.

PIPE's stages are managed by a set of
stage-control units which sequence the
operations of the stages. The stage-
control units can completely reconfigure a
stage for a new operation between every
machine cycle. The stage control units
contain sequences of instructions, with
repeat and branch points, for each stage.
These sequences are down-loaded to the
stage-control units from the host. Fixed
repetition is thus accomplished. The
"UNTIL NO CHANGE" meta-operator requires a
simple comparison operation to be run
between the result domain register and the
previous result domain register after each
iteration. This comparison may occupy a
machine cycle for some HCL operations, but
may be incorporated into the iteration for
others. During the comparison operation,
the stage control unit at each level can be
made to detect the result of a failure to
compare in any cell of any domain register,

317

and to inhibit a sequence branch when this
occurs during the machine cycle.

Extensions.

Some potentially interesting extensions to
the capabilities of HCL can be envisioned
using the PIPE hardware. The possibility
of supplementing the hierarchical HCL
operations with pre- or post-processing
operations in non-pyramid mode has already
been mentioned. Another potentially
interesting extension would be the use of
PIPE's arithmetic convolution mode of
neighborhood operator to extend the scope
of the functions defined in HCL over
Boolean operators. Perhaps the most
immediately useful extension involves
PIPE's MIMD capabilities. Although HCL has
been conceived as a formalism for SIMD
machines, there is no inherent reason why
different HCL operators could not be
applied to different regions of an image in
the same machine cycle on an MIMD machine.
In PIPE, the contents of the bytes in
either one of the two buffers in each stage
can be interpreted as indices pointing to
the set of tables and operations to be
employed when processing the neighborhood
of the corresponding byte in the other
buffer. Thus, during each machine cycle,
up to 255 different HCL operations could be
employed over varying regions of the eight
hierarchical domain registers contained in
one of the buffers of each stage. (The
selectable operations would be down-1loaded
by the host, along with the stage-control
programs. The exact number of selectable
operations available would depend on the
amount of storage available for them, which
is an option.) A typical use of this
capability might be to vary the P-pattern
of the pyramidal neighborhood operation
over different image components such as
edge and non-edge regions. Since the
mapping is arbitrary, the indices in the
directing buffer may in fact be data
resulting from a previous image-processing
cycle, such as an edge-detection operation.

Performance Analysis.

The potential performance of PIPE in
executing HCL algorithms can be affected by
several factors. Typically, execution time
of HCL primitive operations will not be
data dependent, since PIPE always operates
over every neighborhood of every buffer in
every machine cycle. Thus, the primitive
operations are 0(1), that is, a constant
number of machine cygles. PIPE will
perform more than 5 x 10" binary operations
per second over cells of sixteen bit—domaig
registers. It can also perform 2.5 x 10
fourteen-neighbor pyramidal neighborhood
operations per second over eight bit-domain
registers. The actual efficiency obtained
however depends on the way in which the
data makes use of this potential.

The number of useful binary operations is
diminished if all sixteen hierarchical bit-
domain registers are not employed.
Typically several will be employed in every
operation, for example, as X, Y, and Q
domain registers. Several such operations
could be done in parallel, side by side in
the sixteen available hierarchical bit-
domain registers. Also, since PIPE's cycle
time is designed to match RS-170 video
field rates, progressive results of
pyramidal binary operations on sequential
images can be shiffed laterally within the
domain registers, and ultimately output at
video rates after some sequence of
operations while new images are taken in,
thus maximizing use of the domain
registers. 1If a straightforward approach
to storage of pyramid constructions is
employed, the number of useful tli-element
yram1da+ neighborhood operations is only
4.2 x per second, due to the tapering
of the pyramids. The effect is to replace
a multiplication of the base area by eight
levels with a multiplication of the base
area by 4/3, which is the proportion of
pyramid cells to image cells (Tanimoto and
Pavlidis, 1975.) Storage schemes which
could increase this number would appear to
be difficult and marginally useful. As in
the case of binary operations, the
efficiency also depends on the extent to
which multiple domain registers may be
usefully subjected to pyramidal
neighborhood operations simultaneously.

A factor which can be used to

improve the average efficiency, is that
there are many useful cases in which PIPE
will be able to perform both binary
operations and pyramidal neighborhood
operations sequentially within each MPS, in
the same machine c¢ycle. This ability to
micro-code multiple HCL primitive
operations increases efficiency and,
together with the ability to process
multiple domain registers in parallel, can
result in PIPE programs which have fewer
machine cycles than HCL operations.

HCL programs can develop global image
statistics useful in image processing.
This requires bit-serial arithmetic
operations developed from HCL primitives.
Tanimoto (1984) demonstrates that the HCL
computational model can implement bit-
serial arithmetic in O(log N) time,
provided that two hierarchical domain
registers are available as "carry bits" in
addition to one for the "sum." The HCL
program to implement this arithmetic
requires both pyramidal neighborhood
operations which generate sums and inter-~
domain-register binary operations to deal
properly with carry problems. In all, the
operation inputs three bit pyramids,
outputs three new ones, and employs two
others in the computation process. This is

318

an example of a useful operation in which
the inter-domain-register binary operations
may be scheduled within the same machine
cycle as the pyramidal neighborhood
operations. Thus, the PIPE program to
implement bit-serial arithmetic over
hierarchical domains may also be expected
to run in 0(log N) time.

Regardless of the actual processing speed
of a machine, it will not be suitable for
application to real-time image processing
if images cannot be loaded and unloaded in
real-time. This potential bottleneck must
be considered in estimates of the machine's
efficiency. 1In the case of PIPE, the basic
operations are geared to television field
rates (60 images/sec.) Multiple-resolution
pyramids can be built at this rate as well,
and, once such a hierarchy has been
instantiated in the machine, it may be
moved through the machine and replaced by
subsequent pyramids at real~time rates if
the image processing algorithms permit.
Thus, HCL operations and not I/0
considerations will be the true limiting
factor in PIPE's pyramidal mode.

By way of comparison, the 4.2 x 107
fourteen-element pyramidal neighborhood
operations that PIPE will perform each
second could be expected to take 117

seconds on a von Neuman machine under the
assumption that the machine could perform
one access-operate-store instruction per
microsecond, that another microsecond would
be required for computation of indices, and
that a factor of 10 could be saved by
optimization techniques.

Conclusions.

Every fundamental HCL operation corresponds
to at most a single PIPE machine
instruction, and executes in a single
machine cycle. PIPE can operate upon the
data~objects of HCL directly, without using
extra storage for links or pointers, and
without computation of storage addresses.
As a result, it should easily be possible
to write a compiler for HCL which will
permit all HCL statements to be translated
into efficient PIPE programs. Such
programs may be expected to run two orders
of magnitude faster than corresponding
programs for von Neumann machines, and also
faster than other parallel machines which

do not share PIPE'S architectural
correspondence to the structures of HCL.
References

Dyer, C. R., A VLSI Pyramid Machine for
Hierarchical Parallel Image Processing.,
Proc. PRIP '81, The IEEE Computer Soc.
Conf. On pattern Recognition and Image
Processing, Dallas, Tex., Aug. 1981, pp.
381-386.

Kent, E. W., Shneier, M. 0., and Lumia, R.,
PIPE (Pipelined Image Processing Engine).,
J. Parallel and Distributed Computing, 2,
50-78, 1985.

McCormick, B., Kent, E. W., and Dyer, C., A
Visual Analyzer for Real-Time
Interpretation of Time-Varying Imagery.,
in: "Multicomputers and Image Processing
3.", K. Preston and L. Uhr (Eds.), Academic
Press, 1982.

McCormick, B., Kent, E. W., and Dyer, C.,
Highly-Parallel Structures for Real-Time
Image Processing., Proposal submitted for
Office of Naval Research SRO, 1980.

Rosenfeld, A., Picture Languages, Academic
Press, New york, NY, 19709.

Tan;moto, S. L., A Hierarchical Cellular
Logic for Pyramid Computers., J. Parallel
agguDistributed Computing, 1, 105-132,
1 .

Tanimoto, S. L., and Pavlidis, T., A
Hierarchical Data Structure for Picture
Processing, Computer Graphics and Image
Processing, 4, 1975, 104-119.

319

